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Abstract 

The paper presents path planning of dual arm free flying space robot using smooth 
functions of time. Kinematic and dynamic modeling of dual arm free flying space 
robot is presented first. Using kinematic model the Jacobian of the system and 
using dynamic model equation of motion are derived. A path planning 
methodology for planar system is developed using smooth function of time such 
as polynomials. Due to nonholonomic behavior of the manipulator in the zero 
gravity environment linear and angular momentum are conserved. The proposed 
method yields input trajectories that drive both the manipulator and the base to a 
desired configuration. Joint torque curves can be obtained by introducing this joint 
trajectory curves in equation of motion of the space robot. 
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1  Introduction 
Space introduces a complicating factor to a robotic system that is not apparent on 
Earth i.e. the manipulator base is not fixed in space due to zero or microgravity 
environment. This introduces a high degree of dynamic complexity. 
 Path planning of free flying space robot considering non holonomic nature of 
base can be done by bidirectional approach and checking its stability by defining 
Lyapunov function as in [1]. Yoshida et al.[2, 3] has developed the equation of 
motion for multiple arm free flying robotic system and torque optimization for its 
redundant arms. He has also provided an overview of its dynamics and control which 
was verified on ETS-VII. Papadopoulos and Moosavian [4] have used barycentric 
vector method for studying the dynamic behavior of multi-arm space robots during 
chase and capture operations. Papadopoulos et al. [5] also developed a path planning 
methodology for single arm planar free floating space manipulator systems defining 
joint angles as a smooth function of polynomials. In order to overcome the difficulty 
that the dynamic equations of dual-arm space robot system cannot be linearly 
parameterized, Chen and Guo [6] modeled the system as under-actuated and 
asymptotic stability of adaptive control scheme is proved with Lyapunov method. 
Huang et al.[7] derive the impact dynamic equations according to the dynamic model 
of space robot system and proposed a genetic algorithm (GA) based on approach to 
search the optimal configuration of space robot at capturing moment in order to 
minimize or avoid the impact. Sagara and Taira [8] presented cooperative 
manipulation of a floating object by space robots. They also discussed application of 
a tracking control method using the transpose of the generalized Jacobian matrix. 
The dynamics control of a dual-arm space robot installed on a free-flying spacecraft 
without base position and orientation control holding a single object was discussed 
by Zhao et al.[9] 
 In this paper Jacobian of dual arm free flying space robot is derived by 
representing its link lengths as a function of inertia parameters like mass. Equation of 
motion of system is derived and validated by simulation results. Path planning of 
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dual arm planar space robot as a function of polynomial is proposed and it is 
validated by simulation results using MATLAB.  

2 Kinematic and Dynamic Modeling of Dual Arm Free 
Flying Space Robot 
The free flying manipulator have total kn + 6 Degree of Freedom (DOF) with n 
number of links in each k number of arms where base is having six DOF. The 
authors consider the case of dual arm (k = 2) free flying manipulator mounted on a 
base and consist of dual links (n = 2) in each arm as shown in Fig. 1. The arms are 
attached on a base with the help of revolute joints, one of these arms is called 
mission arm (m) which is used to accomplish the space mission, and the other is the 
balance arm (b). The balance arm can also be used to accomplish the mission like the 
mission arm if given an appropriate trajectory to its end-effector. The system Center 
of Mass (CM) remains fixed in space and the frame is considered as inertial frame. 
Let 𝜃𝜃1

𝑚𝑚 , 𝜃𝜃2
𝑚𝑚 , 𝜃𝜃1

𝑏𝑏  and 𝜃𝜃2
𝑏𝑏   be the joint angles of the joints attached to mission and 

balance arm. Here in the absence of external forces or torque (𝜏𝜏), linear and angular 
momentum of the system is conserved.  

 
Figure 1: Dual arm free flying space robot. 

The symbols required for the formulation of equations and Fig. 1 are defined as 
follows: 
Frame I  : Inertia frame 
Frame i  : i-th body frame or i-th link frame of manipulator for i = 1. . . n. For 

the base frame i = 0. 
𝑚𝑚𝑖𝑖     : Mass of i-th body (kg). 
𝑚𝑚𝑇𝑇    : Total mass of the system (kg). 
𝒓𝒓𝑖𝑖      : Distance from CM of i-th link to the preceding joint represented in the 

inertia frame.  
𝒔𝒔𝑖𝑖      : Distance from CM of i-th link to the subsequently joint represented in 

the inertia frame. 
𝑰𝑰𝑖𝑖     : Inertia matrix of i-th link with respect to inertia frame. 
𝒑𝒑 
∗   : Position vector of CM of the end effectors with respect to inertia 

frame. 
𝒑𝒑CM
∗  : Position vector of CM of the system with respect to inertia frame. 

𝑹𝑹𝑖𝑖    :
 Rotation matrix of i-th link with respect to the base frame. 

𝑱𝑱𝑛𝑛∗    : Jacobian matrix with n number of links in the manipulator 
𝑴𝑴∗ : Generalized inertia matrix. 
𝑪𝑪∗  : Centrifugal and Coriolis term. 
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∅   : Joint variables and base variables. 
E3  : Identity matrix. 
𝒑𝒑𝑐𝑐𝑖𝑖  : Position vector of CM of i-th link with respect to inertia frame. 
𝒓𝒓𝑐𝑐0

  : Position vector of CM of base with respect to inertia frame. 
𝒔𝒔0

    : Position vector of the first joint between the link and the base with 
respect to the CM of base in the inertia frame. 

 For free-flying robotic manipulator the Denavit-Hartenberg formulation is 
presented in Ellery [10]. The desired end-effector position for mission arm with 
respect to inertia frame is, 

(𝒑𝒑 
∗)𝑚𝑚  =  𝒑𝒑𝐶𝐶𝐶𝐶∗ + 𝑹𝑹0

𝑚𝑚𝒔𝒔0
𝑚𝑚𝑚𝑚0𝑛𝑛+1

𝑚𝑚 /𝑚𝑚𝑇𝑇−𝑹𝑹0
𝑏𝑏𝒔𝒔0

𝑏𝑏𝑚𝑚0𝑛𝑛+1
𝑏𝑏 /𝑚𝑚𝑇𝑇  + ∑ (𝑛𝑛

𝑖𝑖  = 1 𝑹𝑹𝑖𝑖𝑚𝑚𝜆𝜆𝑖𝑖𝑚𝑚  
 )  −

                            ∑ (𝑛𝑛
𝑖𝑖 = 1 𝑹𝑹𝑖𝑖𝑏𝑏𝜇𝜇𝑖𝑖𝑏𝑏)−[𝑚𝑚𝑛𝑛+1

𝑚𝑚 𝑹𝑹𝑛𝑛+1
𝑚𝑚 𝒓𝒓𝑛𝑛+1

𝑚𝑚 + 𝑚𝑚𝑛𝑛+1
𝑏𝑏 𝑹𝑹𝑛𝑛+1

𝑏𝑏 𝒓𝒓𝑛𝑛+1
𝑏𝑏 ]/𝑚𝑚𝑇𝑇                 (1)         

where 𝜆𝜆𝑖𝑖𝑚𝑚 = [(𝑚𝑚0𝑖𝑖
𝑚𝑚 + 𝑚𝑚1𝑛𝑛+1

𝑏𝑏 ) (kinematic parameter)𝑖𝑖𝑚𝑚 − 𝑚𝑚𝑖𝑖
𝑚𝑚𝑟𝑟𝑖𝑖𝑚𝑚 ]/𝑚𝑚𝑇𝑇 , 

     𝜇𝜇𝑖𝑖𝑏𝑏 = [�𝑚𝑚(𝑖𝑖+1)(𝑛𝑛+1)
𝑏𝑏 �(kinematic parameter)𝑖𝑖𝑏𝑏 +  𝑚𝑚𝑖𝑖

𝑏𝑏𝑟𝑟𝑖𝑖𝑏𝑏 ]/𝑚𝑚𝑇𝑇. 
The desired end-effector position for balance arm with respect to inertia frame is, 

(𝒑𝒑 
∗)𝑏𝑏  =  𝒑𝒑𝐶𝐶𝐶𝐶∗ + 𝑹𝑹𝟎𝟎𝒃𝒃𝒔𝒔0

𝑏𝑏𝑚𝑚0𝑛𝑛+1
𝑏𝑏 /𝑚𝑚𝑇𝑇−𝑹𝑹0

𝑚𝑚𝒔𝒔0
𝑚𝑚𝑚𝑚0𝑛𝑛+1

𝑚𝑚 /𝑚𝑚𝑇𝑇 + ∑ (𝑛𝑛
𝑖𝑖 = 1 𝑹𝑹𝑖𝑖𝑏𝑏𝜆𝜆𝑖𝑖𝑏𝑏  

 )  −
                            ∑ (𝑛𝑛

𝑖𝑖 = 1 𝑹𝑹𝑖𝑖𝑚𝑚𝜇𝜇𝑖𝑖𝑚𝑚 )−[𝑚𝑚𝑛𝑛+1
𝑏𝑏 𝑹𝑹𝑛𝑛+1

𝑏𝑏 𝒓𝒓𝑛𝑛+1
𝑏𝑏 + 𝑚𝑚𝑛𝑛+1

𝑚𝑚 𝑹𝑹𝑛𝑛+1
𝑚𝑚 𝒓𝒓𝑛𝑛+1

𝑚𝑚 ]/𝑚𝑚𝑇𝑇               (2) 
where 𝜆𝜆𝑖𝑖𝑏𝑏 = [(𝑚𝑚0𝑖𝑖

𝑏𝑏 + 𝑚𝑚1𝑛𝑛+1
𝑚𝑚 ) (kinematic parameter)𝑖𝑖𝑏𝑏 − 𝑚𝑚𝑖𝑖

𝑏𝑏𝑟𝑟𝑖𝑖𝑏𝑏 ]/𝑚𝑚𝑇𝑇, 
           𝜇𝜇𝑖𝑖𝑚𝑚 = [�𝑚𝑚(𝑖𝑖+1)(𝑛𝑛+1)

𝑚𝑚 �(kinematic parameter)𝑖𝑖𝑚𝑚 +  𝑚𝑚𝑖𝑖
𝑚𝑚𝑟𝑟𝑖𝑖𝑚𝑚 ]/𝑚𝑚𝑇𝑇 . 

Now,                                            𝑱𝑱𝑛𝑛∗ = �
 𝑱𝑱𝑇𝑇𝑖𝑖 

𝑱𝑱𝑅𝑅𝑖𝑖 �
6×𝑘𝑘𝑛𝑛

                                                      (3)                                                              

 𝑱𝑱𝑇𝑇𝑖𝑖  is 3×kn the Jacobian matrix for linear velocity of link i. 
𝑱𝑱𝑅𝑅𝑖𝑖  is 3×kn the Jacobian matrix for angular velocity of link i. 
For mission and balance arm Jacobian is, 

                           ( 𝑱𝑱𝑛𝑛∗ ) 
𝑚𝑚  =  ∑ ∑ 𝜕𝜕𝑹𝑹 𝑖𝑖

𝑚𝑚

𝜕𝜕𝜃𝜃 𝑗𝑗
𝑚𝑚

𝑖𝑖
𝑗𝑗  = 1

𝑛𝑛
𝑖𝑖  = 1 𝜆𝜆𝑖𝑖𝑚𝑚 − ∑ ∑ 𝜕𝜕𝑹𝑹 𝑖𝑖

𝑏𝑏

𝜕𝜕𝜃𝜃 𝑗𝑗
𝑏𝑏

𝑖𝑖
𝑗𝑗  = 1

𝑛𝑛
𝑖𝑖  = 1 𝜇𝜇𝑖𝑖𝑏𝑏                      (4) 

                           ( 𝑱𝑱𝑛𝑛∗ ) 
𝑏𝑏  =  ∑ ∑ 𝜕𝜕𝑹𝑹 𝑖𝑖

𝑏𝑏

𝜕𝜕𝜃𝜃 𝑗𝑗
𝑏𝑏

𝑖𝑖
𝑗𝑗  = 1

𝑛𝑛
𝑖𝑖 = 1 𝜆𝜆𝑖𝑖𝑏𝑏 − ∑ ∑ 𝜕𝜕𝑹𝑹 𝑖𝑖

𝑚𝑚

𝜕𝜕𝜃𝜃 𝑗𝑗
𝑚𝑚

𝑖𝑖
𝑗𝑗  = 1

𝑛𝑛
𝑖𝑖  = 1 𝜇𝜇𝑖𝑖𝑚𝑚                      (5) 

 The brief concept of equation of motion of a free flying space robot as a multi 
body system is presented elsewhere [7] is, 
                                                             𝑴𝑴∗∅̈ + 𝑪𝑪∗ = 𝝉𝝉.                                              (6) 
where 
                        ∅ = [𝑋𝑋0   𝑌𝑌0    𝑍𝑍0    𝜃𝜃0𝑥𝑥     𝜃𝜃0𝑦𝑦     𝜃𝜃0𝑧𝑧     𝜃𝜃1

𝑚𝑚     𝜃𝜃2
𝑚𝑚     𝜃𝜃1

𝑏𝑏     𝜃𝜃1
𝑏𝑏 ]𝑇𝑇                 (7) 

                                           𝑴𝑴∗   =  � 
𝑴𝑴𝑩𝑩𝑩𝑩𝒔𝒔𝑩𝑩 𝑴𝑴𝑪𝑪𝑪𝑪𝑪𝑪𝒑𝒑𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

𝑴𝑴𝑪𝑪𝑪𝑪𝑪𝑪𝒑𝒑𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑻𝑻 𝑴𝑴𝑨𝑨𝒓𝒓𝑨𝑨𝒔𝒔

�
(6+𝑘𝑘𝑛𝑛 )×(6+𝑘𝑘𝑛𝑛 )

             (8) 
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                                                                                                                                    (9)                                                         
𝑴𝑴𝐴𝐴𝑟𝑟𝑚𝑚𝐴𝐴   = [∑ ( 𝑱𝑱𝑅𝑅𝑖𝑖𝑇𝑇𝑛𝑛

𝑖𝑖  = 1 𝐼𝐼𝑖𝑖  𝑱𝑱𝑅𝑅𝑖𝑖 +  𝑚𝑚𝑖𝑖  𝑱𝑱𝑇𝑇𝑖𝑖𝑇𝑇  𝑱𝑱𝑇𝑇𝑖𝑖 )𝑚𝑚 + ∑ ( 𝑱𝑱𝑅𝑅𝑖𝑖𝑇𝑇𝑛𝑛
𝑖𝑖 = 1 𝑰𝑰𝑖𝑖  𝑱𝑱𝑅𝑅𝑖𝑖 +  𝑚𝑚𝑖𝑖 𝑱𝑱𝑇𝑇𝑖𝑖𝑇𝑇  𝑱𝑱𝑇𝑇𝑖𝑖 )𝑏𝑏 ]𝑘𝑘𝑛𝑛×𝑘𝑘𝑛𝑛                      

                                                                                 (10)   

𝑴𝑴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  = �
[∑ 𝑚𝑚𝑖𝑖  𝑱𝑱𝑇𝑇𝑖𝑖 ]𝑚𝑚𝑛𝑛

𝑖𝑖  = 1 + [∑  𝑚𝑚𝑖𝑖 𝑱𝑱𝑇𝑇𝑖𝑖 ]𝑏𝑏𝑛𝑛
𝑖𝑖  = 1

�∑ (𝑰𝑰𝑖𝑖 𝑱𝑱𝑅𝑅𝑖𝑖 + 𝑚𝑚𝑖𝑖   𝑷𝑷�𝑐𝑐𝑖𝑖  𝑱𝑱𝑇𝑇𝑖𝑖 𝑛𝑛
𝑖𝑖 = 1 �]𝑚𝑚 + [∑  (𝑰𝑰𝑖𝑖  𝑱𝑱𝑅𝑅𝑖𝑖 + 𝑚𝑚𝑖𝑖  𝑷𝑷�𝑐𝑐𝑖𝑖  𝑱𝑱𝑇𝑇𝑖𝑖 𝑛𝑛

𝑖𝑖 = 1 )]𝑏𝑏
�

6×𝑘𝑘𝑛𝑛

(11) 

 𝒑𝒑0𝑐𝑐𝑚𝑚
 = [𝒑𝒑𝑐𝑐𝑚𝑚∗ − 𝐫𝐫c0

 ]3×1 ,  𝒑𝒑0𝑐𝑐𝑖𝑖
 = [𝒑𝒑𝑐𝑐𝑖𝑖 − 𝐫𝐫c0

 ]3×1                                                    (12) 
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𝑷𝑷�𝑐𝑐𝑚𝑚 ,𝑷𝑷�𝑐𝑐𝑖𝑖 ,𝑷𝑷�0𝑐𝑐𝑚𝑚  and 𝑷𝑷�0𝑐𝑐𝑖𝑖  are the 3×3 skew symmetric matrix of position vectors 
𝒑𝒑𝑐𝑐𝑚𝑚∗ , 𝒑𝒑𝑐𝑐𝑖𝑖 , 𝒑𝒑0𝑐𝑐𝑚𝑚

  and 𝒑𝒑0𝑐𝑐𝑖𝑖
  respectively. 

We have assume that there is no external force acting on the system therefore, the 
centrifugal and Coriolis term is,   
                                                           𝑪𝑪∗ =   𝑴𝑴∗̇  ∅̇                                                   (13) 

3. Path Planning for Dual Arm Free Flying Space Robot 
The non integrability property of angular momentum introduces non-holonomic 
characteristics to free floating systems. For simplicity we consider the planar case of 
the dual arm model i.e. kn + 1 DOF system in which base is having one DOF about z 
direction 𝜃𝜃0. In this section the path planning for single arm as in [5], is implemented 
for dual arm case. 

The linear and angular momentum conservations for both mission and balance 
arm are represented by the following equations, 
                                              𝐷𝐷0�̇�𝜃0

 +  𝐷𝐷1�̇�𝜃1
𝑚𝑚 + 𝐷𝐷2 �̇�𝜃2

𝑚𝑚 = 0                                      (14)                              
                                              𝐷𝐷0�̇�𝜃0

 +  𝐷𝐷3�̇�𝜃1
𝑏𝑏 + 𝐷𝐷4 �̇�𝜃2

𝑏𝑏 = 0                                       (15) 
where 𝐷𝐷0,  𝐷𝐷1,  𝐷𝐷2,  𝐷𝐷3,𝐷𝐷4  are functions of system inertial parameters. For mission 
arm effect of 𝜃𝜃1

𝑏𝑏  and 𝜃𝜃2
𝑏𝑏  is neglected, hence the scleronomic constraint can be written 

in the form;  
             𝐷𝐷0(𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚)𝑑𝑑𝜃𝜃0 + 𝐷𝐷1(𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 )𝑑𝑑𝜃𝜃1

𝑚𝑚 + 𝐷𝐷2(𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 )𝑑𝑑𝜃𝜃2
𝑚𝑚 = 0.  (16) 

For balance arm effect of 𝜃𝜃1
𝑚𝑚  and 𝜃𝜃2

𝑚𝑚  is neglected, hence the scleronomic constraint 
can be written in the form, 
             𝐷𝐷0(𝜃𝜃0,𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏)𝑑𝑑𝜃𝜃0 + 𝐷𝐷3(𝜃𝜃0,𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏)𝑑𝑑𝜃𝜃1

𝑏𝑏 + 𝐷𝐷4(𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏)𝑑𝑑𝜃𝜃2
𝑏𝑏 = 0.         (17) 

The coefficients of the nonholonomic constraint become,  
𝐷𝐷0(𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 ) =  𝐷𝐷0(𝜃𝜃0,𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏) = 𝛥𝛥0,  

𝐷𝐷1(𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 ) = 𝛥𝛥1
𝑚𝑚 + 𝛥𝛥3

𝑚𝑚cos(𝜃𝜃1
𝑚𝑚 − 𝜃𝜃2

𝑚𝑚 ),       
                                𝐷𝐷2(𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 ) = 𝛥𝛥2

𝑚𝑚 + 𝛥𝛥3
𝑚𝑚cos (𝜃𝜃1

𝑚𝑚 − 𝜃𝜃2
𝑚𝑚 ),                          (18) 

𝐷𝐷3(𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏) = 𝛥𝛥1
𝑏𝑏 + 𝛥𝛥3

𝑏𝑏cos(𝜃𝜃1
𝑏𝑏 − 𝜃𝜃2

𝑏𝑏), 
𝐷𝐷4(𝜃𝜃0,𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏) = 𝛥𝛥2

𝑏𝑏 + 𝛥𝛥3
𝑏𝑏cos(𝜃𝜃1

𝑏𝑏 − 𝜃𝜃2
𝑏𝑏) 

where Δ’s are the function of inertia, length and masses of the links and base. 
In general form, Inertia =  mass ×  (radius of gyration)2 

𝛥𝛥0
 = 𝐼𝐼0 , 𝛥𝛥1

𝑚𝑚 = 𝐼𝐼1𝑚𝑚 + [(𝑟𝑟1𝑚𝑚 )2𝑚𝑚0
 𝑚𝑚1

𝑚𝑚 + 𝑚𝑚1
𝑚𝑚𝑚𝑚2

𝑚𝑚 (𝐴𝐴1
𝑚𝑚 )2 + (𝑎𝑎1

𝑚𝑚 )2𝑚𝑚0
 𝑚𝑚2

𝑚𝑚 ]/𝑚𝑚𝑇𝑇
  

𝛥𝛥2
𝑚𝑚 = 𝐼𝐼2𝑚𝑚 + [𝑚𝑚2

𝑚𝑚 (𝑚𝑚0
 + 𝑚𝑚1

𝑚𝑚 )(𝑟𝑟2
𝑚𝑚 )2] /𝑚𝑚𝑇𝑇

  , 
                                𝛥𝛥3

𝑚𝑚 = [𝑚𝑚1
𝑚𝑚𝑚𝑚2

𝑚𝑚𝑟𝑟1𝑚𝑚𝑟𝑟2
𝑚𝑚 + 𝑚𝑚0

 𝑚𝑚2
𝑚𝑚𝑎𝑎1

𝑚𝑚𝑟𝑟2
𝑚𝑚 ] /𝑚𝑚𝑇𝑇

                            (19) 
𝛥𝛥1
𝑏𝑏 = 𝐼𝐼1𝑏𝑏 + [(𝑟𝑟1𝑏𝑏)2𝑚𝑚0

 𝑚𝑚1
𝑏𝑏 + 𝑚𝑚1

𝑏𝑏𝑚𝑚2
𝑏𝑏(𝐴𝐴1

𝑏𝑏)2 + (𝑎𝑎1
𝑏𝑏)2𝑚𝑚0

 𝑚𝑚2
𝑏𝑏 ] /𝑚𝑚𝑇𝑇

  
𝛥𝛥2
𝑏𝑏 = 𝐼𝐼2𝑏𝑏 + [𝑚𝑚2

𝑏𝑏(𝑚𝑚0
 + 𝑚𝑚1

𝑏𝑏)(𝑟𝑟2
𝑏𝑏)2] /𝑚𝑚𝑇𝑇

  
𝛥𝛥3
𝑏𝑏 = [𝑚𝑚1

𝑏𝑏𝑚𝑚2
𝑏𝑏𝑟𝑟1𝑏𝑏𝑟𝑟2

𝑏𝑏 + 𝑚𝑚0
 𝑚𝑚2

𝑏𝑏𝑎𝑎1
𝑏𝑏𝑟𝑟2

𝑏𝑏 ] /𝑚𝑚𝑇𝑇
  

Path planning can be done if this form is transformed to the Eq. consisting of 
two differentials. So non-integrable equations of the form of Eq. (16) and Eq. (17) 
can be written as, 
                                                     𝑑𝑑𝐶𝐶 +  𝑣𝑣.𝑑𝑑𝑑𝑑 =  0                                               (20) 
                                                     𝑑𝑑𝑥𝑥 +  𝑦𝑦.𝑑𝑑𝑧𝑧 =  0                                                (21) 
where u, v, w are properly selected functions of 𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚and x, y, z are properly 

selected functions of 𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏 . 
For mission arm and balance arm the forward transformation is given by, 
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𝐶𝐶(𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 ) = 𝛥𝛥0
 .𝜃𝜃0

 + 𝛥𝛥2
𝑚𝑚 .𝜃𝜃2

𝑚𝑚 − 𝛥𝛥3
𝑚𝑚 . sin(𝜃𝜃1

𝑚𝑚 − 𝜃𝜃2
𝑚𝑚 )                                        

          𝑣𝑣(𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 ) = 𝛥𝛥1
𝑚𝑚 + 2𝛥𝛥3

𝑚𝑚 . cos(𝜃𝜃1
𝑚𝑚 − 𝜃𝜃2

𝑚𝑚 ), 𝑑𝑑(𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 ) = 𝜃𝜃1
𝑚𝑚 .     (22) 

𝑥𝑥(𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏) = 𝛥𝛥0
 .𝜃𝜃0

 + 𝛥𝛥2
𝑏𝑏 .𝜃𝜃2

𝑏𝑏 − 𝛥𝛥3
𝑏𝑏 . sin(𝜃𝜃1

𝑏𝑏 − 𝜃𝜃2
𝑏𝑏), 

              𝑦𝑦(𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏) = 𝛥𝛥1
𝑏𝑏 + 2𝛥𝛥3

𝑏𝑏 . cos(𝜃𝜃1
𝑏𝑏 − 𝜃𝜃2

𝑏𝑏), 𝑧𝑧(𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏) = 𝜃𝜃1
𝑏𝑏 .           (23) 

Therefore, the planning problem reduces to choosing functions f and g given by 
Eq.(24). We choose function f as a fifth orders polynomial and g can be forth order 
polynomial, so that while finding coefficients of them the system initial and final 
configuration, velocity and acceleration can be satisfied.  

𝑑𝑑 =  𝑧𝑧 = 𝑓𝑓(𝑡𝑡) = 𝑐𝑐5𝑡𝑡5 + 𝑐𝑐4𝑡𝑡4 + 𝑐𝑐3𝑡𝑡3 + 𝑐𝑐2𝑡𝑡2 + 𝑐𝑐1𝑡𝑡  + 𝑐𝑐0 
                       𝐶𝐶  = 𝑥𝑥 =  𝑔𝑔(𝑑𝑑) = 𝑏𝑏4𝑑𝑑4 + 𝑏𝑏3𝑑𝑑3 + 𝑏𝑏2𝑑𝑑2 + 𝑏𝑏1𝑑𝑑  + 𝑏𝑏0                 (24) 

𝑣𝑣 = 𝑦𝑦 = −𝑔𝑔’(𝑑𝑑) = −(4𝑏𝑏4𝑑𝑑3 + 3𝑏𝑏3𝑑𝑑2 + 2𝑏𝑏3𝑑𝑑  + 𝑏𝑏1) 
Here the coefficients of polynomial w are computed using the initial and final 

values of orientation  𝜃𝜃1
𝑚𝑚 , angular velocity �̇�𝜃1

𝑚𝑚  and angular acceleration  �̈�𝜃1
𝑚𝑚 . The 

coefficients of polynomial z are computed using the initial and final values of 
orientation 𝜃𝜃1

𝑏𝑏 , angular velocity �̇�𝜃1
𝑏𝑏  and angular acceleration �̈�𝜃1

𝑏𝑏 .  
For mission arm use initial and final conditions of 𝜃𝜃0,𝜃𝜃1

𝑚𝑚  and 𝜃𝜃2
𝑚𝑚   in Eq. (22) to 

find 𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 , 𝐶𝐶𝑓𝑓𝑖𝑖𝑛𝑛 , 𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡 , and 𝑣𝑣𝑓𝑓𝑖𝑖𝑛𝑛  and using the polynomial Eq. (24) we get unknown 
coefficients 𝑏𝑏3 , 𝑏𝑏2 , 𝑏𝑏1 , 𝑏𝑏0  for mission arm. For balance arm use initial and final 
conditions of 𝜃𝜃0,𝜃𝜃1

𝑏𝑏  and 𝜃𝜃2
𝑏𝑏   in Eq. (23) to find 𝑥𝑥𝑖𝑖𝑛𝑛𝑡𝑡 , 𝑥𝑥𝑓𝑓𝑖𝑖𝑛𝑛 , 𝑦𝑦𝑖𝑖𝑛𝑛𝑡𝑡 , and 𝑦𝑦𝑓𝑓𝑖𝑖𝑛𝑛  and using the 

polynomial Eq. (24) we get unknown coefficients 𝑏𝑏3 , 𝑏𝑏2 , 𝑏𝑏1 , 𝑏𝑏0 for balance arm. 
Once f and g are found, the trajectories or 𝜃𝜃0,𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 ,𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏 are found using the 

inverse transformation from u, v, w to 𝜃𝜃0,𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚  and x, y, z to 𝜃𝜃0,𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏 . It is seen 
that both the arms has a cumulative effect on orientation of base 𝜃𝜃0. 
 

4 Simulation and Results 
Dynamic model derived in Eq. (6) of space robot is simulated using MATLAB and 
Simulink software. Simulation of equation of motion is obtained by providing step 
input to four DC motors located at the four joints of the dual arm robot. Table1 
shows the parameters used in simulation. 
 Table 1: Parameters used in simulating of joint motion                                                     

Mass of base(𝑚𝑚0
 ) 4kg 

Mass of 1st link of mission and balance arm 𝑚𝑚1
𝑚𝑚 = 𝑚𝑚1

𝑏𝑏  0.2942 kg 
Mass of 2st link of mission and balance arm including masses of 
their grippers 𝑚𝑚2

𝑚𝑚 = 𝑚𝑚2
𝑏𝑏  0.2942 kg 

Length of 1st link of mission and balance arm 𝑎𝑎1
𝑚𝑚 = 𝑎𝑎1

𝑏𝑏  0.4 m 
Length of 2st link of mission and balance arm 𝑎𝑎2

𝑚𝑚 = 𝑎𝑎2
𝑏𝑏  0.3 m 

Distance of CM of base to first joint of both the arms (𝐴𝐴0
𝑚𝑚 ) = (𝐴𝐴0

𝑏𝑏 ) 0.5 m 
Inertia of 1st link of mission and balance arm 𝐼𝐼1𝑚𝑚=𝐼𝐼1𝑏𝑏  0.03 kg m2 

Inertia of 2st link of mission and balance arm including end 
effectors inertia 𝐼𝐼2𝑚𝑚 = 𝐼𝐼2𝑏𝑏  0.02 kg m2 

Inertia of base (I0) 0.4 kg m2 
 End effectors trajectory is obtain by first simulating joint motions of the robot 
and then transferring it to its tip using Jacobian given by Eq. (4) and Eq. (5). To 
validate equations of motion of the proposed model, base disturbance caused due to 
the effect of mass and inertia of links should be negligible, hence increasing base 
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mass to 400 kg and inertia to 300 kg m2. The two links of each arm are made straight 
and joint between them is locked by increasing the motor damping B2 by 100 times. 
As expected the two end effectors of mission arm and balance arm plot a circular 
trajectory as shown in Fig. 2, radius equal to the summation of their dynamic link 
lengths. 
 For simulation of path planning parameters used are same as given in Table 1 
the duration of motion is chosen equal to 10 s. Let initial system configuration of 
mission arm be (𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 )in ≡(0°, 30°) and the final be (𝜃𝜃1

𝑚𝑚 ,𝜃𝜃2
𝑚𝑚 )fin ≡(30°,60°). Let 

initial system configuration of balance arm be (𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏 )in ≡(180°,150°) and the final 
be (𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏 )fin ≡(140°,100°).The initial system configuration of base is (𝜃𝜃0

 )in ≡ 0° and 
the final is (𝜃𝜃0

 )fin ≡ 5° 

  
Figure 2: Plot of Xtip v/s Ytip of dual arm space robot for both the arms. 

 
This requirement may result in a range of possible b4. Of these, b4 is chosen so that 
the range of allowable final spacecraft attitudes is maximized. For this case, for both 
the arms b4 = 20. Joint torques curves can be obtained by simplifying Eq. (6) to the 
planar case.  

 
Figure 3: Path followed by all four joints of both the arms using polynomial approach for 

(𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 )in ≡ (0°, 30°) , (𝜃𝜃1
𝑚𝑚 ,𝜃𝜃2

𝑚𝑚 )fin ≡(30°,60°), (𝜃𝜃1
𝑏𝑏 ,𝜃𝜃2

𝑏𝑏 )in ≡(180°,150°) and 
(𝜃𝜃1

𝑏𝑏 ,𝜃𝜃2
𝑏𝑏 )fin≡(140°,100°). 

As shown in Fig. 3, the desired configuration is reached in the specified time. Also, 
all trajectories are smooth throughout the motion, and the system starts and stops 
smoothly at zero velocities, as expected and shown in Fig. 4. As shown in Fig. 5, the 
required torques can be easily be applied by the joint actuators to reach the final 
configuration. From Fig. 6 total base orientation changes from 53.27° to -6.85° 
which contains the desired 5°, but the total base disturbance is around 60° which is 
undesirable. Hence increasing the base mass to 10 kg and its inertia to 1 kg-m2 for 
feasible solution we can minimize total base disturbance to 10° as shown in Fig. 7. 
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Figure 4: Rate of change of joint angles of both the arms.  

 
Figure 5: Manipulator torques of both the arms.   

 
Figure 6: Base disturbance and base velocity variation with time.  

 
Figure 7: Base disturbance and base velocity variation with time for increased mass and 

inertia.  
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5. Conclusions  
In this paper dynamic modeling and path planning of dual arm free flying space 
robot is presented. Equation of motion for the case of dual arm free flying is derived 
and simulated in Simulink. A path planning methodology was implemented for dual 
arm free flying space manipulators using smooth and continuous functions such as 
polynomials. From the practical point of view, one should investigate the 
applicability of the method to more than two arms and three dimensional systems. 
One can also see the effect of increasing the degree of polynomial considering 
uncertainties in inertial parameters during path planning. 
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