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Abstract 

 
The present work deals with stability analysis of a spinning viscoelastic rotor 

mounted on a rotating (precessing) base under the effect of axial centrifugal tension, 
where the spin axis and precession axis intersect at right angle. The nutation speed 
is zero, the spin and precession speeds are considered to be uniform and the 
precession axis is located at one end of the shaft. The axial centrifugal force on the 
disc due to precession speed has been considered. The properties of the shaft 
material correspond to those of a linear viscoelastic model of four element type. The 
shaft-disc system is assumed to be axially and torsionally stiff. For analysis, a 
simple supported rotor has been considered with a rigid disc on a massless 
viscoelastic shaft. The governing 3rd order parametric equations for such a rotor are 
derived in the simultaneously spinning and precessing frame by using the principle 
of virtual work. The stability borderlines are computed using the generalized 
eigenvalue problem considering spin speed, precession speed and the centrifugal 
force on the disc as parameters. Variation in axial centrifugal tension is effected by 
varying the location of the disc from the precession axis on the shaft. 

Keywords: Precession, Spin, Viscoelastic , Centrifugal tensile force  

1 Introduction 
Rotor on maneuvering base has presently become a topic of considerable interest and 
were studied by Lin and Meng[1], Das et al[2,3]. Passive damping technology using 
viscoelastic materials is traditionally used to control vibrations of structures [4]. The 
growing use of such structures has motivated many authors to study stability analysis 
of viscoelastic spinning rotor models [5]. 
      It is known that a simultaneously spinning and precessing elastic rotor becomes 
unstable beyond a certain precession speed as demonstrated by Ghosh et al. [6,7]. 
Bose [8] considered the effect of stiffening of such rotors due to centrifugal force. 
In the present work, the authors have investigated the stability of a rigid disc on 
viscoelastic shaft, which is simultaneously spinning and precessing under the effect 
of centrifugal axial force on the disc. A material model obtained by combination of 
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elastic and viscous elements has been used in the analysis as formulated by Bland et 
al [9,10]. The stability borderlines are computed considering spin and precession 
speeds and the centrifugal force on the disc as parameters. 
 

2 Formulation  
A spinning viscoelastic shaft-disc system mounted on a precessing base is shown in 
Fig.1a. The objective of the present analysis is to find out the effect of spin and 
precession speeds on the stability of a rotor under the effect of axial centrifugal force 
on the rigid disc.  
A rotor with a shaft and disc is shown in Fig.(1a). The rotor is spinning with a 
constant angular velocity  about an axiss x . This axis is again precessing about 

the inertial Z axis with an angular velocity p . The inertial reference is represented 

by the coordinate system . The coordinate system XYZ zyx   precesses about the 

axis Z with a uniform angular velocity  as shown in Fig.(1b). The reference p xyz  

has an angular velocity of (  where  is the unit vector along )îˆ
skp k̂ Z and i is 

the unit vector along the direction

ˆ

x . With respect to the reference xyz  the shaft-disc 

system undergoes small deformations (Fig.2 & Fig.3). The symbols 
, represent the displacements and rotations of the disc along and zuyu , zB,yB y

z directions respectively.  

Figure 1a: A spinning and precessing rotor    Figure 1b: Coordinate systems  fixed 
                                                                 to inertial and rotating references 

 

 
Figure.2:Location of deformed center of                Figure.3: Rotations of the disc. 
the disc. 
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2.1 The variational formulation 
 The disc has a kinetic energy for its rigid body motion and deformation. The 
viscoelastic forces on the disc act as restoring forces. Axial centrifugal force on the 
rigid disc is also considered in the formulation. The Hamilton’s principle for the 
shaft-disc system can be expressed as 

 0
2

1

  dtVWT
t

t
axve                                                     (1) 

Where, is the first variation of kinetic energy,T veW is the virtual work done by 

the viscoelastic forces and axV is the first variation of potential energy due to axial 

centrifugal force. The kinetic energy is a function of the displacements and their first 
order time-derivatives. 
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Where, the symbol stands for the displacement of the degree of freedom. iu thi

The virtual work done by the viscoelastic forces is   ve
T FU . The first variation of 

potential energy can be expressed as    T FU ax . The symbols 

, , stand for displacement vector , the viscoelastic force and the axial 

force respectively in the spinning and precessing reference 

 U veF  axF 
xyz  
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After certain manipulations one can show,   
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The above equation states that in the spinning and precessing coordinate system the 
sum of the virtual work done by the inertia forces, the viscoelastic forces and the 
axial centrifugal force is zero. 
The equilibrium equations are as below:  

       0 axvein FFF                                                    (5) 

2.2 Four degree of freedom model 
The four degree of freedom model considers the small rotational deformations of the 

disc in addition to translational movements. In undeformed condition, the vector  
is the center the disc with respect to 

iR ˆ
zyx   reference. In deformed state, the center 

has position vector and velocity in the same reference denoted respectively [6] as : 
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Where, the deformations at the location of the disc along the directions and y
z are denoted by and yu  zu  respectively.                              

The translational kinetic energy can be expressed as 
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The angular location of the disc can now be expressed by the consecutive rotations 
as shown in Fig.(1b) and Fig.(3). 
The rotational deformations of the disc can be described as two infinitesimal 
rotations and  about the axes zB  yB  z  and b (close to y ) respectively. 

 Now, retaining all the terms to avoid missing out of any resulting significant term in 
the process, the components of the angular velocity vector and rotational kinetic 
energy of the disc can be expressed in the coordinate system as follows [6]: - abc
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Where, the polar and transverse mass moments of inertia of the disc are represented 
by the symbols  and respectively. For thin discs PI TI TP II 2 . 

The inertia force now can be computed by considering appropriate terms in the 
Lagrange’s equations from Eq.(4).  
The stress-strain relation for a viscoelastic material of the shaft can be represented by 
a four element model (Fig.4) as described below: 
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Where and are moments about yM zM y and axes respectively. The stiffness 

matrix can now be derived by using the first principle using Eq. (4) where, is 

defined as force at the degree of freedom for a unit displacement along 
degree of freedom keeping all other degrees of freedom (other than ) 

fixed. 
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The viscoelastic stiffness matrix is obtained simply by replacing the modulus of 

elasticity E  in an elastic stiffness matrix by the operator E . 
The shaft-disc system is under the effect of axial centrifugal force on the disc due to 
precession. The potential energy due to axial force is expressed as: 
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The disc is located at a distance a from the precession axis. Distance of the disc from 
the other end is .The total length of the shaft is b bal   
 
For both end fixed beam: 

From first principles and can be expressed in terms of the four degrees of 

freedom. Using Eq.(11) and appropriate terms in Lagrange’s equation, following 
relations are obtained for 2 different regions of length – from 0 to ‘a’ and the other 
from ‘a’ to ‘l’: 
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where and  are the axial forces acting on shaft segments ‘a’ and ‘b’ 

respectively. 
F1 F 2

For simple supported beam: 
Similarly for simply supported beam 
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Dynamic equilibrium equation for the shaft-disc system for 4 degree of freedom is: 
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The governing equation for 4 degree freedom system is of the following form: 
                     0)2sin2cos( 211   UttUCUM SSSCAXAX KKKKKK        (15) 
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If the operator E is replaced by modulus of elasticity E , the elastic stiffness matrix 
is obtained. 
 

2.3 Stability analysis 
Considering the differential operator at the denominator of the stress-strain relation, 
Eq.(15) becomes a 3rd order equation with periodic coefficients. This equation is 
converted to first order equations, thrice in number.  
Governing equation for the 4 degree freedom system is: 
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By substituting  matrix  K  from Eq.(16) and E from Eq.(9) in the above 
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Arranging the terms in state space matrix form: 
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Or             022   tSinXDtCosXCXBXA SS
                 (18) 

Where   
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The assumed solution for kth  element in the vector  X is expressed as  

 .......2sin2cossincos 22110   tbtatbtaaeX s
k

s
k

s
k

s
kktk     (19) 

Proceeding in a systematic way followed by Nandi et al [11] , one finally obtains the 
generalized eigenvalue problem from which the stability analysis is performed. 

     XBXA                                                           (20) 

Where,                   sscc PKPKIKDMA  1  and     IMB   

The symbol   stands for Kronecker product. Kronecker product between two 
matrices is explained below: - 
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QpQp

QP 2221

1211

   (21) 

The matrices  1D , and  cP  sP  are the first order differentiation matrix, cosine 

product operation matrix and sine product operation matrix respectively [11]. 
 Stability is determined by examining the largest real part of the eigenvalues. If at 
least one such real part is positive in sign, the system is unstable. 

3 Results and Discussion 
A viscoelastic shaft ,with disc placed at a specified location ’a’ from one end of the 
spinning massless shaft, is considered with two different support conditions- simple 
support and both end fixed support. The end of the shaft at the precession axis is 
always fixed. If the other end is axially free, the shaft is termed as an axially free 
shaft. When both the ends are axially fixed, the shaft is referred to as an axially fixed 
shaft.   
The shaft is 0.2m in length and 0.02m in diameter. The diameter and mass of the disc 
are 0.15m and 0.25kg respectively. 
 Four element type model of Fig.4 was found to fit reasonably to the properties [12]. 

2
3

2
2 /.225,/.282 mSecNmSecN  2

1
2

3 /2460000,/845000 mNEmNE   

Values of different coefficients as mentioned above are derived from the plots of 
storage modulus and loss coefficient for a four element viscoelastic model [12]. 
Three case studies are considered where the disc is located at = 0.03m, 0.05m and 
0.08m from the precession axis. Fig.(4a) displays variation in axial centrifugal force 
acting on the disc due to its placement at different locations from precession axis.  

a

 
Axially free rotor 
The end at the precession axis is axially restrained while the other one is kept axially 
free. Stable and unstable zones of operation for the three cases are plotted in Fig.(5) 
and Fig.(6) for varying spin and precession speeds for a simple supported rotor and 
both end fixed rotor when only one end of the shaft located at the precession axis is 
axially restrained. 
It is seen that in each case, the generic stability region is approximately of the form 
of a half trapezoid. Stability borderline increases with increase in precession speed 
due to consequent increase in axial centrifugal tension till it becomes unstable over a 
specific precession speed where the precession softening offsets the centrifugal 
stiffening. 
It is seen that rotors which are subjected to larger axial tensile forces are more stable. 
Consequently, rotors where the disc is placed at a greater axial distance from the 
precession axis have comparatively larger stability zones. In lower precession speed 
ranges, effect of axial centrifugal force becomes less and hence there is not much 
contribution of centrifugal force on stability borderlines irrespective of the location 
of the disc. 
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Axially fixed rotor 
Fig.(4b) displays variation in axial centrifugal force acting on the disc due to its 
placement at different locations from precession axis when both ends of the shaft are 
axially fixed. Stable and unstable zones of operation for the three case studies are 
plotted in Fig.(7) and Fig.(8) for varying spin and precession speeds. When the shaft 
is axially fixed at both ends, axial centrifugal compressive force comes into existence 
at one segment of the shaft in addition to the centrifugal tensile force existing at the 
other segment. This centrifugal compression force partially nullifies the stability 
leverage when the axial tensile force only used to exist in the previous case.  
It is clearly demonstrated that stability zones for axially free configuration is much 
larger compared to that of axially fixed configuration. This shows that in order to 
utilise the advantage of larger stability zone one has to keep the shaft axially free at 
one of its two ends. 
 

 
Figure.4a: Centrifugal force variation         Figure.4b: Centrifugal force variation for 
for axially free rotor                                     axially fixed both end rotor 
 

 
Figure.5: Plots of stable and unstable zones for axially free simple supported rotor 

with disc attached at distance ‘a’ =0.03m, 0.05m, 0.08m from one end 
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Figure.6. Plots of stable and unstable zones for axially free fixed end rotor with disc 

attached at distance ‘a’ =0.03m, 0.05m, 0.08m from one end 
 

 
Figure.7: Plots of stable and unstable zones for axially fixed simple supported rotor 

with disc attached at distance ‘a’ =0.03m, 0.05m, 0.08m from one end 
 

 
Figure.8. Plots of stable and unstable zones for axially fixed both end fixed rotor 

with disc attached at distance ‘a’ =0.03m, 0.05m, 0.08m from one end 
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4 Conclusions 
The present work computes the stability borderline of a spinning and precessing 
viscoelastic rotor under the application of axial centrifugal force. A four-element 
linear viscoelastic model represents the frequency dependent material properties of 
the shaft. Governing equations of motion for a rigid disc on a viscoelastic shaft are 
derived in the rotating frame. A systematic scheme has been suggested for 
eigenvalue analysis of resulting 3rd order parametric equations for such systems. The 
effect of position of the disc and axial constraint of the shaft on stability of the rotor 
has been demonstrated. 
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