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Abstract 
The present work aims at eigenvalue analysis of three-dimensional finite element rotor 
models using a simple mass-lumping scheme frequently used in structural dynamics. 
Finite element analysis of spinning systems is more complicated than the conventional 
structural ones due to the presence of the anti-symmetric gyroscopic or Coriolis 
matrices. In the present work, the mass matrix is lumped keeping the gyroscopic/Coriolis 
matrix intact. Unlike structural dynamics, in order to take care of the anti-symmetric 
terms the eigenvalue analysis needs to be performed in state space. For rotors on 
isotropic or rigid bearings, the matrices in the state space becomes 2n  2n in size, where 
the mass, stiffness and gyroscopic/Coriolis matrices are of the order n  n. If the 
bearings are orthotropic, the size of the eigenvalue problem further increases depending 
on the terms considered in the assumed solution. In this case the mass matrix appears 
twice in the final eigenvalue problem and only one of them requires to be lumped. It is 
shown in this work that in both the above cases, a diagonal mass matrix considerably 
reduces the computational effort. It is observed that the results using conventional and 
lumped mass matrices match particularly well when the rotor has different bending 
stiffness in two perpendicular planes. 

1  Introduction 
The research endeavor in this direction started with Rayleigh and Timoshenko beam 
elements [1] for shaft and point inertia elements for discs. Though these elements are still 
very popular in practice, researchers extensively experimented with conical shaft 
elements, axisymmetric rotor elements and three-dimensional solid elements [2,3,4,5]. 
As the finite element models became more and more complicated over years, the number 
of degrees of freedom involved also increased manifold. 
 The present work deals with an aspect of analysis of three-dimensional analysis of 
rotor models using 10-node tetrahedral elements. In three-dimensional formulation one 
has to use a spinning frame for derivation of the governing equations [5]. In this spinning 
frame, the orthotropic bearing stiffness becomes periodic. The governing equations thus 
become parametric in nature. A rotor cross-section is symmetric when the rotor has same 
bending stiffness in two perpendicular planes. A symmetric rotor on rigid, isotropic and 
orthotropic bearing is stable in absence of a destabilizing source like rotating damping, 
oil seals etc. A non-symmetric rotor is unstable in a specific region of spin speed [6].  
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 The present work explores the possibility of using the HRZ lumping scheme [7] in 
eigenvalue analysis of three-dimensional finite element model of rotors. Campbell 
diagrams are constructed for symmetric rotors on rigid/isotropic bearings using 
consistent and lumped mass matrices and compared. For non-symmetric rotors on 
rigid/isotropic bearings both real and imaginary part of the eigenvalues are compared. 
Results for several test cases are presented where rotors with circular, square, rectangular 
and elliptic cross-sections are considered. 
 For stability analysis of rotors on orthotropic bearings, a variant of the Hill’s method 
is adopted in this work [8]. This method reduces the problem to computation of 
eigenvalues of a parametric system. This problem is ultimately converted to a 
generalized eigenvalue problem with much larger number of degrees of freedom. The 
HRZ scheme makes the original mass matrix a diagonal one. When stability analysis is 
performed in state-space, a diagonal mass matrix enables one to convert this generalized 
eigenvalue problem of this much larger system to a standard one. The mass matrix occur 
a couple of times in the final eigenvalue problem. A lumped mass matrix is used for one 
and a consistent one for the other. Now, the user has to store and operate on much less 
number of terms. For this case, since the work is still in progress, the authors could only 
present the formulation part. 
 

2  Analysis 

In a spinning frame, the finite element equations for a three-dimensional rotor model 
supported on an orthotropic spring can be written as follows[8]: 
 
                     fUtKtKKKUCUM bsbcbwbrrr   2sin2cos0

                  (1) 

 

 wbrK =Appropriate stiffness matrix plus part of isotropic support damping in rotating 

frame without considering the boundary (support) stiffness contributions 

  bK 0 Matrix having non-zero contributions from support stiffness terms, which are 

not functions of time 

    bsbc KK , Matrix having non-zero contributions from support stiffness terms, 

which are coefficients of cosine and sine functions respectively 
 
In state vector form, 
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Equation (2) is written as follows: - 

            (3 ) 
 

For rotor on rigid/isotropic bearing,      0 sKcK  

               02sin2cos  ZtsKZtcKZKZM 
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Therefore, one obtains a generalized eigenvalue problem, 
                                   (4)      ZMZK 
 

The diagonal mass matrix is denoted by the symbol   iirm  
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Where,   








iirm

1
is a another diagonal matrix whose diagonal elements are reciprocal 

of those of   
iirm  

 
For rotor on orthotropic bearing, a solution of the equation (3) can be assumed in the 
following form: - 
                                                                                                                  (6)      tetyZ   

   (7) 
 

   (8) 
 

   

    ) 

 
Where, 

           btatbtaaty t 4sin4cos2sin2cos)( 44220

Substituting relation (7) in equation (3) the following set of homogeneous first order 
ordinary differentials equations are obtained. 

                    0

A single element in the   vector can be represented as y
2sin2cos  ytKytKyKyMyM sc

tbtatbtaay kkkkk
k  4sin4cos2sin2cos 44220

 
 
This can be written as 
 
                 (9)    k

jj
k

k dTdTy 
Where, 
    ttttT  4sin4cos2sin2cos1
 

   T 
 
Now,      (10
 

Where, the matrix  is the first order differentiation operation matrix  1D
Neglecting coefficients of the terms t6cos and t6sin , the product 

can be expressed as follows: -   tyk 2cos
                                                         

                         (11)                                                          
                                                                                                                                  

kkk bab 442

k

kdcijPiTtky 2cos

kkk aad 20

jiji
k
jjk dDTdTy 1 
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Where, the matrix   is the product operation matrix for stiffnesses with cosine 

coefficients. 



    

cP

Similarly, the product can be expressed as follows: - tky 2sin

                                            
             (12)

Where, the matrix  is the product operation matrix for stiffnesses with sine 

coefficients. 

 sP

k
jdsijPiTΩtky 2sin

Equation (8) can be expressed in indicial notation as follows: - 

02sin2cos  jtysijkjtycijkjyijkjhijmjyijm                   (13) 

 

Replacing by its assumed solution as given in equation (6) and making use of the first 

order differentiation operation matrix and the product operation matrices for cosine and 
sine terms, the following expression is obtained. 

jy

Or, 

          (15) 
Where, 

he Kronecker product between two matrices 
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n use a lumped mass matrix in the right hand side and a consistent one 
in left hand one.  

The right hand side now become
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Equation beco s me
  

              (17) 
            

 

Where, the matrices   and 
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are both diagonal matrices. Diagonal element 

cide stability. A positive real part of an eigenvalue 
dicates instability of that mode. 

ass by the sum of the 
iagonal terms associated with a translational degree of freedom.  

l elements it is very difficult to mesh the region where the shaft is connected to 

he zero 

eds the results deviate more 
ith the lumped mass formulation predicting lower values. 

ig  shaft-             for            
            disc system           tapered square shaft 

of one is the reciprocal of the corresponding one of the other. 
In general, the eigenvalues are complex numbers whose imaginary parts are the whirl 
frequencies and the real parts de
in
 
2.1  HRZ lumping scheme 

The HRZ scheme is a simple and effective scheme [7] for producing a diagonal mass 
matrix for structural dynamic analysis. The basic idea is to use the scaled diagonal terms 
of the consistent mass matrix. The scaling is so done that the total mass of the element is 
preserved. The scale factor is determined by dividing the total m
d
 

3  Case Studies 
The finite element mesh is created using 10-node tetrahedral element, which is better 
suited for meshing solids with irregular shape than the hexahedral brick element. With 
hexahedra
the disc. 
 The eigenvalues are computed for different rotor configurations using consistent and 
lumped mass matrices. It is known that the first mode of the rotor can be accurately 
modelled using a fairly coarse mesh. In the present work, for selection of the mesh, a 
convergence study on the first two eigenvalues is performed. In order to model a fixed 
end of a cantilever all the degrees of freedom at the fixed end are restrained. T
slope condition is achieved by restraining the axial degrees of freedom.  
 First,a cantilevered shaft-disc system is considered (Fig.1). The shaft is of 400 mm 
length and 10 mm radius. The disc has a radius of 100 mm and thickness of 10 mm. The 
system is modelled using 10 node tetrahedral elements. The whirl speed is plotted against 
spin speed of the rotor in Fig.3. For the forward whirl speeds the results from the two 
formulations are very close but for the backward whirl spe
w

 
 
 
 

                      
         

 
 
 F . 1: Mesh idealization for      Fig. 2: Mesh idealization
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In the second numerical example, a cantilevered tapered shaft with square cross 
section is considered (Fig.2). The shaft has 20 mm  20 mm square cross section and 
a length of 400 mm. The finite element mesh is shown in Figure. The results deviate 
considerably specially for the backward whirl (Fig.4). 
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     Fig. 3: Campbell diagram for                               Fig. 4: Campbell diagram for 
              shaft-disc system                                                 tapered square shaft 
 
It is known that a rotor with different bending stiffness in two perpendicular planes is 
unstable. In this example stability analysis of a cantilevered tapered shaft of rectangular 
cross section is carried out with both consistent mass matrix and lumped mass matrix 
formulations. The shaft is 400 mm long and tapers from a 60 mm  40 mm cross section 
to a cross section with half the dimensions (Fig. 5). The smaller end is fixed. The real 
and imaginary parts of the eigenvalues are plotted in Figure 7 & Figure 8. The value of 
the maximum real part of eigenvalues indicates stability.. The same configuration with 
80 mm  40 mm cross-section at the left end is analyzed next (Fig. 6) and the results are 
plotted in Figure 9 & Figure 10. The consistent and lumped formulations give almost 
identical results and the values are in agreement with the values given in standard 
literature.     
 
 
 
 
 
 
 
    
 
     Fig. 5: Mesh idealization for tapered                Fig. 6: Mesh idealization for tapered  
   rectangular shaft with 60 mm  40 mm            rectangular shaft with 80 mm  40 mm  
                        cross section                                                      cross section 
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Fig. 7: Maximum real part of eigenvalues            Fig. 8: Whirl speed plots vs spin speed 
          plotted against spin speed for                          for tapered rectangular shaft with 
          tapered rectangular shaft with                           60 mm  40 mm cross section 
         60 mm  40 mm cross section 
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Fig. 9: Maximum real part of eigenvalues          Fig. 10:  Whirl speed plots vs spin speed 
         plotted against spin speed for                           for tapered rectangular shaft with 
        tapered rectangular shaft with                              80 mm  40 mm cross section 
        80 mm  40 mm cross section 
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Lastly, stability analysis is performed for a cantilevered tapered asymmetrical shaft of 
elliptical cross section (major axis (2a): minor axis (2b) = 2:1) (Fig. 11). The length of 
the shaft is same as that considered in the previous cases.  The cross-section tapers from 
a dimension a = 40 mm and b = 20 mm at the left to one with half the dimensions at the 
right. The smaller end is fixed. The eigenvalues are plotted in Figure 12 & Figure 13. 
Plots of the data from the two formulations show close proximity.  

 
 
 
 
 
 
 
 

Fig. 11: Mesh idealization for tapered elliptical shaft 
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Fig. 12: Maximum real part of eigenvalues               Fig. 13: Whirl speed vs spin speed 
           plotted against spin speed for                            plots for tapered elliptical shaft 
                tapered elliptical shaft 

 
 

4  Conclusion 

The present work examines the performance of the well-known HRZ lumping scheme in 
eigenvalue analysis of rotors. This method reduces the computational effort to a large 
extent and found to be specially promising for shafts with unequal bending stiffness in 
two perpendicular planes. However, results for rotors only on rigid bearings are 
presented in this work. In order to have a conclusive idea about the performance of the 
proposed scheme, extensive numerical tests are being attempted on rotors with other 
types of bearings. 
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