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Abstract 

 
This paper presents a simple second order, curvature based mobility analysis of 

planar curves for rotation. The underlying theory and methods are purely 
geometrical, dealing with penetration and separation of curves with multiple 
contacts, based on relative configuration of osculating circles at points of contact for 
rotation about each point of the plane. Starting with a single contact, partitioning of 
the plane into four types of mobility regions has been shown. Using point based 
composition operations based on dual-number matrices; analysis has been extended 
to computationally handle multiple contacts scenario. A novel coloured directed 
line has been proposed to capture the contact scenario. Multiple contacts mobility is 
obtained through intersection of the mobility half spaces. It is derived that mobility 
region comprise a pair of open or a single closed convex polygon. The theory has 
been used for analysis of form closure and synthesis of revolute pairs.  

Keywords: mobility analysis, form closure, kinematic pair. 

1 Introduction 
The study of mobility analysis of objects in contact dates back to the time of Franz 
Reuleaux [1]. Planar constraints were analyzed by velocity centers, which is a first 
order analysis. Reuleaux’s method sometimes gives false positives [2], [3], [4]. It is 
recognized in literature that the first order mobility analysis, which considers only 
the tangent at the point of contact, is insufficient [3], [4], [5] to give complete 
information regarding the relative motion between two rigid bodies in contact, 
especially when persistence of contact between the two is not insisted upon. A 
second order analysis of curves and surfaces in the configuration space 
characterizing the mobility of the concerned bodies is available in [3]. The approach 
is insightful but is rather involved for practical use. The work presented here uses 
geometry of the objects directly. Mobility analysis of objects in contact is presented 
in section 2. Section 3 deals with region based composition operations. Extension of 
mobility analysis to the form closure of a planar object has been worked out in 
section 4. Synthesis of revolute kinematic pair based on the mobility analysis 
developed, is presented in section 5. 
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2 Mobility Analysis 
The mobility analysis in this paper deals with the ability of a smooth planar object 
initially having finite number of contacts with a fixed object, to rotate about an 
arbitrary point of the plane. All the contacts are unilateral constraints disallowing 
penetration into fixed planar object. The motion space of an object having multiple 
contacts with a fixed object is studied in the following sections. 

2.1 Representation of planar objects 

The planar smooth objects are represented using NURB curves which offer a variety 
of shapes. The first derivatives of the curves give the tangent vectors, which are then 
used for appropriately aligning the two bodies in a contacting configuration. The 
second derivatives at the contact give the osculating circles which closely 
approximate the curves at that point. The fixed and moving curves and their 
osculating circles are referred to as, f-curve, m-curve, f-circle and m-circle 
respectively. The centers of f- and m-circles are Cf and Cm respectively. The three 
possible types of contacting geometries shown in Fig.1 belong to two classes which 
we call convex and concave class. In a convex type contact both the contacting 
curves are convex and in a concave type contact one of the contacting curves is of 
concave type. We refer to the contact normal line as n-line in this paper. 

2.2 Single contact mobility analysis  

The canonical aspect of mobility analysis of objects in contact is determining the 
mobility characteristics for a single contact. Any point O in the plane is considered 
and the m-curve is given a small rotation about this point; the penetration or 
separation resulting from this motion is analyzed using the f- and m-circles. The 
penetration and separation of m-circle for a clockwise (CW) and counterclockwise 
(CCW) rotation about various locations of rotation center O in the plane, for a 
convex contact is shown in Fig.2. The centers of transformed m-circle after CCW 
and CW rotation are C’

m and C”
m respectively.  

     
(a) Convex (m)-

Convex ( f ) contact. 
(b) Concave (m)-
Convex ( f ) contact. 

(c) Convex (m)-
Concave ( f ) contact. 

Fig.1: Geometries of contacting curves. 

2.2.1 Geometrical analysis 

We now give a geometrical proof of penetration or separation for two cases to put 
forward the line of argument, which is also applicable to all the other cases too. The 
geometrical proof of penetration or separation is simple if the center of rotation lies 
along the n-line. For the case in Fig.2 (c) (left figure), using triangle inequality in 
triangle OC’

mCf ; we have Cf C’
m+ C’

mO > OCf . But we have OCf = OCm+ CmCf and 
also since O is the center of rotation; OCm = OC’

m. Hence we have Cf C’
m > CmCf , 

which means that the center to center distance between the transformed m-circle after 
a CCW rotation and f-circle increased. This implies that the m-circle separates from 
f-circle for a CCW rotation about O. When the center of rotation doesn’t lie along the 
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n-line, an additional geometrical construction is required. In Fig.2 (a), perpendicular 
bisector to the line-segment CmC”

m is dropped from rotation center O. This 
perpendicular bisector cuts the line-joining the original centers of curvature in T. 
Now in triangle C”

mCfT, we have CfT + TC”
m > C”

mCf . But TC”
m= TCm since T lies 

on the perpendicular bisector of the line-segment CmC”
m. Hence, CfT+TCm > C”

mCf , 
meaning Cf Cm > C”

mCf and implying that m-circle penetrates into the f-circle for a 
CW rotation about point O. 

 

 

(a) O in right-half plane. CCW-
separation. CW-penetration. 

(b) O in left-half plane. CCW-
penetration. CW-separation. 

   
(c) O not in between Cf and Cm along n-line. 
CCW and CW- separation. 

(d) O in between Cf and Cm along 
n-line. CCW and CW- penetration. 

Fig.2: Transformation of m-circle after CCW and CW rotation about point O in the 
plane for a convex contact.  

2.2.2 Partitioning of the plane  

At any point of contact, the plane is partitioned into four regions based on the 
mobility characteristics of the m-curve with respect to the f-curve as shown in Fig.3. 
For a point in region 1, the m-circle penetrates into f-circle for both clockwise (CW) 
and counterclockwise (CCW) rotation and hence this is a blocked region. Region 2 
contains points for which m-circle penetrates into f-circle for clockwise rotation, but 
separates for counterclockwise rotation. In mobility region 3, the situation is 
opposite. In region 4, m-circle separates from f-circle for both directions of rotation. 
Regions 1 and 4 are line segments which are the partitions of the n-line; regions 2 
and 3 are the two half-planes on either side of the n-line. The region delimited by the 
centers of curvature is either region 1 or region 4 depending on the geometry of 
curves at the contact. The complementary region on the line is of the alternate type 
as shown in Fig.3. If the rotation center coincides with either Cf or Cm, the contact 
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between the curves will be preserved for second-order rotation motion about this 
point, thus m-curve remains adhered to the f-curve. While the motion of m-curve for 
rotation about Cm is pure slipping at contact point, motion of m-curve for rotation 
about Cf is a pure sliding one.  

   
(a) Convex contact. (b) Concave contact with 

moving concave curve. 
(c) Concave contact with 

fixed concave curve. 
Fig.3: Motion space from contact point curvatures for various contacting 
geometries. Regions 1: No rotation blocked, 2: CW rotation blocked, 3: CCW 
rotation blocked, 4: Every rotation blocked. 

          It is thus well established from the above observations that the relative 
configuration of the two centers of curvature and the point of contact identify the 
four regions unambiguously. The motion space partition doesn’t depend on the 
actual position of contact point; it depends only on the absolute location of centers 
of curvature and the relative location of contact point with respect to the line-
segment delimited by the two centers of curvature. Each point in region 1, 2, 3 and 4 
is color coded as red (R), green (G), yellow (Y) and white (W) respectively for 
computer visualization and from now the four region numbers and four colors are 
used interchangeably. 

2.2.3 Computational scheme 

A point classification scheme has been developed to computationally handle coloring 
of the plane for a single contact. The position vectors of the point of contact (C) and 
a point O in the plane are C and O respectively. Cm and Cf are the position vectors of 
centers of curvature Cm and Cf respectively. We define Rm = Cm-C, Rf = Cf -C and p 
= O-C (Fig.4). k is unit vector pointing out of the plane of the paper. 

 
Fig.4: Vectors used, to classify a point (O) of the plane. 

Point O in the plane is classified to which region it belongs to, based on the 
following rules: (i). if ( ) ( )( )( ) 0<•×−• kpRRRR fmfm , the point belongs to region 

2(G), with respect to that contact. (ii). if ( ) ( )( )( ) 0<•×−• kpRRRR fmfm , the point 
belongs to region 3(Y), with respect to that contact. (iii). if  
( ) ( )( )( ) 0=•×−• kpRRRR fmfm , then point lies along the n-line. To further classify 
a point lying on the n-line, we define a scalar r such that 
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                                   r 
( )( ) ( )( )
( )( ) ( )( )ffmmfm

ffmm

RRRRRR
ROCROC
•−•−
•−•−

=                                  (1)         

The point belongs to region 1 (R) or region 4 (W) if r < 0 or if  r > 0 respectively. 

2.3 Multiple contacts mobility analysis 

If mobility in one sense is disallowed by a contact, no new contact can provide it 
back. Hence, the net mobility is the intersection of mobility obtained with respect to 
each contact. The composition rules in terms of color codes are:  (a). RRR =⊕ , (b).

GGG =⊕ , (c). YYY =⊕ , (d). YRRRY ⊕==⊕ , (e). GYRYG ⊕==⊕ ,                                     
(f). YWYWY ⊕==⊕ , (g). GWGWG ⊕==⊕ , (h). RWRWR ⊕==⊕ . To 
computationally perform the above compositions, a matrix representation for color 
codes is proposed. Each color is represented as a 22×  matrix as 
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


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where ε is a symbol such that 0&0 2 =ε≠ε . The above representation is only one 
of the many possible dual-number matrix representations. The composition operation 
corresponds to a matrix multiplication. Fig.5a and Fig.5b show the mobility regions 
of the plane for two contacts and three contacts cases respectively, based on point 
classification scheme. 

  
(a) Coloring of the plane 
for a two contacts case. 

(b) Coloring of the plane 
for a three contacts case. 

Fig.5: Motion space of a body with two and three contacts. 

2.4 Asymptotic mobility 

The above analysis indicates that the mobility based classification of points has 
coherence in the convex regions; if any point on a line through a point of contact C is 
considered in the region with some mobility, classification of the points on the two 
sides of C are opposite. This would imply that the classification of the point at 
infinity depends on the direction of its approach; this is unacceptable! However, it 
can be observed that both actually mean that the translational mobility in an 
orthogonal direction is consistent (Fig.6). Thus, actually there is no ambiguity.  

 
Fig.6: Rotational mobility subsumes translational mobility in the plane. 
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3 Region Based Composition 
Method of computing mobility type classification of a given point of the plane in a 
multiple contacts scenario was described in section 2.3. But if one asks a question of 
the kind: “Is there any region/point belonging to region 4 in the plane?”, the 
computational method described in previous sections fails to answer this question 
since that procedure samples points of the plane with certain accuracy. In such a kind 
of point sampling procedure, one may lose out point/s belonging to region 4 since 
they always exist along lines as delimited line segments or as just points. In a two 
contacts case like Fig.5a, the point of intersection of two n-lines belongs to region 4 
(W), but the colored image doesn’t show this because that point missed out in the 
sampling process. So a thorough region based composing operation scheme is 
developed. 

3.1 Representation of a single contact 

Based on the mobility characteristics for a single contact (section 2.2), a 
representation which combines all the contacting geometry types is proposed, which 
allows for composing mobility regions in a multiple contacts scenario. Each contact 
and the corresponding n-line is represented using a colored oriented line-segment 
whose end points are the centers of curvature Cm and Cf , and its orientation being 
from Cm towards Cf. Color code of the line-segment, either red (r)  or white (w), is 
appended to the oriented line-segment to represent convex and concave class contact 
respectively. We use the terminology of r-line and w-line to mean a n-line containing 
colored oriented line-segment of red and white color respectively (Fig.7). 

  
(a) r-line contact and mobility regions. (b) w-line contact and mobility regions. 

Fig.7: Mobility regions in a single contact. 
The left and right motion half-planes of r-line are yellow (Y) and green (G) 
respectively (Fig.7a). For a w-line, the half-plane colors are swapped (Fig.7b). Along 
the n-line, if the line-segment is either red (R) or white (W), the complimentary 
regions of the line are either white (W) or red (R)  respectively.  

3.2 Multiple contacts mobility regions 

Mobility regions of a single point contact is a pair of half spaces delineated by the n-
line. Each half is a convex set; hence their Boolean composition also constitutes a set 
of convex regions. In multiple contacts scenario the n-lines intersect to give  a set of 
unbounded and bounded convex cells which are intersections of  the  half-planes 
generated by the intersecting lines themselves. The problem of classifying the entire 
plane is reduced to the classification of edges, vertices and interiors of these convex 
cells. Based on the discussions above the following observations can be made. 

i. In a single contact case, along the n-line, only the symmetric mobility 
regions 1 and 4 occur. Multiple contacts can only reduce mobility; hence, in 
a multiple contacts scenario,  bidirectional rotation is possible only if 

a. All the n-lines pass through a given point 
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b. The given point belongs to region 4 for each contact 
Result 1: In a multiple contacts scenario bidirectional rotation is possible 
only about  a single point in the plane. 

 
ii. Suppose, all but one other n-lines intersect at a point and the point provides 

mobility type 4 with respect to every contact. Now, this point belongs to 
one of the half-planes of the non-cointersecting line. As a result, only a net 
unidirectional mobility would survive. 
Result  2: If atleast one of the n-lines does not pass through the point of 
intersection of any two of other n-lines, then the mobility region 4 is null. 
 

iii. In a single contact case, the unidirectional rotational mobility regions 2 and 
3 occur as open half-spaces. Intersection of convex sets is a convex set. 
Intersection of a set of open halfspaces is a set of bounded or unbounded 
open regions of coherent mobility classification. 
Result 3: A bounded region of mobility and a point of bidirectional mobility 
are mutually exclusive 
Result 4: If a single point has unidirectional mobility then its neghbourhood 
also has the same mobility (derived from coherence and open nature of set). 
Result5: A single point with unidirectional mobility induces a finite 
neighbourhood of same mobility. 

From the above results it is concluded that only two patterns of the configuration of 
the n-lines are distinctly different, viz. all n-lines are co-intersecting and they are not 
so. In the first case, if the common point has bidirectional mobility with respect to all 
the contacts, then the pair has instantaneous bidirectional mobility; otherwise, it has 
no mobility about this point. Additionally, for n contacts, the plane is partitioned into 
2n unbounded wedge shaped regions. In the second case, no point in the plane 
provides bidirectional mobility. Additionally, we get a collection of more than 2n 
bounded and unbounded regions wherein the number of unbounded regions is always 
2n. Each of these regions is a convex region containing points with coherent mobility 
type. Hence classification of any one point classifies all points in the region. 

Lemma: If one of the bounded regions provides non-trivial mobility, then this is the 
only such region; otherwise it is a pair of disjoint unbounded regions with opposite 
mobility. 

Proof: Enumeration of all the regions is combinatorially difficult; the region(s) which 
survive successive inclusion of the n-lines would be the desired region with 
unidirectional mobility. Thus we need to classify a given region with respect to a 
newly added n-line. If the new line intersects a region, the subspace with matching 
classification only survives. If it does not intersect then it will kill the region with 
opposite classification. Hence, every new line either reduces the extent or count of 
the regions with unidirectional mobility. Since one contact gives two regions of 
unidirectional mobility, this number is never exceeded. Moreover, since the 
unbounded regions are convex, open and disjoint, they are always linearly separable. 
Hence, the line that isolates a bounded region of unidirectional mobility, the other 
unbounded region would be in the same side of the line but with opposite mobility. 
Thus it will annihilate the unbounded region. Hence the lemma is proved. 
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The lemma and its proof provide a highly efficient procedure to determine 
availability and type of mobility for a pair of smooth curves with n contacts. The 
algorithm is omitted for the sake of brevity, but one such result is shown in Fig.8. 
For convenience r-line segment is colored black in the figure. 

   
(a) 2nd n-line reduces half 

plane regions 2 and 3. 
(b) Introducing 3rd n-line 

reduces extent of region 3. 
(c) Introducing 4th n-line 

annihilates region 3. 

Fig.8: Successive inclusion of n-lines and unidirectional mobility regions. 

4 Form Closure Analysis 
A contact configuration for which region 1 covers the whole plane corresponds to a 
form closure configuration and the object is immobilized. For a contact scenario 
similar to the one shown in Fig.5a, if a third contact can be established such that the 
third n-line passes through the point of intersection of previous two n-lines and is 
contained in the vertically-opposite sections belonging to region 1 as a result of two 
contact composition, and the point of intersection of these three n-lines after 
composition for three contacts belongs to region 1, then the entire plane belongs to 
region 1 as shown in Fig.9 and the object is form closed. Fig.10 illustrates a special 
situation wherein only two contacts immobilize the m-curve. However, a first order 
analysis would indicate that the instantaneous center of the moving curve lies 
anywhere along the n-line. This establishes the simplicity of the present approach 
and the efficacy of its inferences.  

   

Fig.9: Form closure 
with three convex 

fixtures. 

Fig.10: Form closure 
with two contacts. 

Fig.11: Local bidirectional 
rotation about intersection 

point of n-lines. 

5 Synthesis of Revolute Pair 
In a multiple contacts scenario, if region 4 is not null, then a local bidirectional 
rotation about a point in this region is feasible, and mostly the bodies are going to 
separate as a result. In the two contacts scenario like the one shown in Fig.5a, only 
the point of intersection of n-lines belongs to region 4. To preserve this point to 
region 4 and cover the rest of plane with region 1, a third n-line is introduced such 
that it passes through the point of intersection of previous two n-lines and is 
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contained in the vertically opposite sections belonging to region 1 of two contact 
composition and the intersecting point of three lines belongs to region 4 with respect 
to third contact also (Fig.11). The persistence and change of contacts define different 
types of revolute kinematic pair with gross motion capabilities and the limits of their 
ranges of motion respectively. Alternatively, we can also have a persistence of center 
of rotation by having a persistence of contact and contacting geometries (Fig.12) 
which follows from the observation that in a single contact, rotation about Cf or Cm 
preserves the contact. The rotation center is then the coincident center of curvature at 
all the contacts, of the curve along which the point of contact moves. The second-
order mobility analysis thus helps one to identify equivalent revolute-joint types 
resulting from conforming as well as non-conforming geometries in contact. 

 

   
(a) Pure slipping 
full revolute pair. 

(b) Pure sliding 
full revolute pair. 

(c) Pure slipping 
partial revolute pair. 

(d) Pure sliding 
partial revolute pair. 

Fig.12: Persistence of rotation center. 

6 Conclusion 
In this paper second-order mobility analysis of smooth planar contacting objects is 
studied using the geometries of contacting objects. It is shown that second order 
analysis results in partitioning of first order motion space along the contact normal 
line. A composition scheme using dual-number matrices is presented to handle 
multiple contacts mobility analysis. A novel contact vectors representation scheme 
helped determination of exact mobility regions through polygon intersection. It is 
established that non-trivial mobility region is a pair of open or a single closed convex 
polygon. The nature of the trivial mobility region is given by the intersection of 
contact vectors. The result led to systematic analysis of form closure and synthesis of 
revolute pairs which are impossible from first order analysis alone. 
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