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Abstract 

 
In this work, shape optimization is carried out of a single link flexible revolute 

flexible manipulator. Robotic link is considered as an Euler-Bernoulli beam and 
finite element formulation is done for its dynamics analysis using Newmark’s 
scheme. Sequential quadratic programming (SQP) method is used to minimize the 
dynamic maximum tip deflection in order to have vibration suppression. Optimized 
revolute robotic manipulator may be preferred in the real world applications as per 
vibration issue is concerned due to its flexible nature. 

Keywords: Flexible revolute manipulator, Euler-Bernoulli beam, Shape 
optimization, Finite Element Method, Sequential quadratic programming  

1 Introduction 
Conventional robots are comprised of rigid links. For last few decades, flexible 
beams have been a topic of investigation in the field of robotics to replace some of 
the rigid links of the robot. Flexibility due to light weight has an importance due to 
several advantages (e.g. - require less material, higher manipulation speed,   transport 
-able, etc.). However, there are some disadvantages associated with the flexible 
manipulators (e.g.-vibration problem due to low stiffness, etc.). Precision in 
positional accuracy and vibration control are the challenging tasks for researchers. 
Residual vibrations of flexible manipulators take time to settle down, which affects 
the subsequent operations of robotic tasks. This forcible delay needs optimal design 
of the robotic systems.  

Most of the researchers optimized the fundamental frequency of the cantilever 
beam or manipulator.  Cranch and Adler [1] presented the closed-form solutions in 
term of Bessel’s functions for the natural frequencies and mode shapes of the 
unconstraint non-uniform beams with four kinds of rectangular cross-sections. 
Heidebrecht [2] determined the approximate natural frequencies and mode shapes of a 
non-uniform simply supported beam from frequency equation using Fourier sine 
series. Bailey [3] numerically solved the frequency equation derived from Hamilton’s 
principle to obtain natural frequencies of the non-uniform cantilever beams. 

 Karihaloo and Niordson [4] determined the optimum tapering of a cantilever 
beam carrying an end mass to maximize fundamental frequency. Lio [5] developed a 
generalized method for the design of a cantilever beam of circular cross-section in 
flexural vibration. The beam is composed of two materials along the length. Wang 
[6] addressed optimum design of a single link manipulator to maximize its 
fundamental frequency. He formulated the design problem as a nonlinear eigenvalue 
problem using variational method. He demonstrated the increase of fundamental 
frequency as a result of optimization through numerical examples. Wang and 
Meirowitch [7] extended the work of Karihaloo and Niordson [4] to find substantial 
improvement in optimum shape through simplifying original analysis and solution 
procedure.  
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Wang and Russel [8] proposed minimax design method to construct the 
optimum shape under a finite range of tip loads and observed an increase of 643% in 
fundamental frequency.  Xu and Ananthasuresh [9] employed sequential quadratic 
programming (SQP) method available in MATLAB for shape optimization of 
segment of compliant mechanism. Proposed objective function with a number of 
constraints tries to achieve the optimum balance between a flexibility measure and a 
stiffness measure. Examples indicate substantial improvement due to shape 
optimization. 

Gunjal and Dixit [10] addressed the shape optimization of a rotating beam at 
different speeds with constraints on its mass and static tip deflection. They studied 
natural frequencies and dynamic response of the optimized beam. Dixit et al. [11] 
presented FEM model of single link flexible robotic manipulator for revolute and 
prismatic joint. They used SQP for optimizing beam shapes under different 
optimization conditions and compared its dynamic responses and fundamental 
frequencies.   

In this work, author presented the optimized shapes for different payload cases 
which give the minimum of maximum dynamic tip deflection for that particular 
payload. Author also presented the dynamic response due to sinusoidal torque profile 
along with bang-2 torque and also the behaviour of the optimized manipulator for 
payloads other than the payload for which it is optimized. 

2 Modelling and Solution Technique 
High speed rotating flexible beams have significant transverse deflections. They 
behave as a nonlinear elastic beams and exhibit vibratory motions in both chord wise 
and flap wise directions. However, Robotic manipulators usually work at moderate 
peak speed. Induced transverse force in the chord wise direction due to the applied 
excitation torque is much higher compared to the gravity force in flap wise direction 
and vibrations are predominantly in chord wise directions. Formulations are 
consistently linearized for small transverse deflection due to bending motion under 
linear beam theory as a two-dimensional idealization. This simplified model is not 
suitable for modelling the dynamic behaviour of single link flexible manipulator with 
large deflections.  
        The finite element formulation has been described in Dixit et al. [11]. It is 
described here for the sake of completeness. Figure 1(a) shows single link flexible 
manipulator in which XOY and ROS represents the stationary and moving co-
ordinate frames respectively. T  represents the applied torque at the hub, q represents 
the  loading intensity (load per unit length) in the transverse plane and E, I, L, ρ, A, 
Jh and Mp represents the Young’s modulus, area moment of inertia, length, mass 
density, cross-sectional area, hub-inertia and  payload of the manipulator 
respectively. Motion of the manipulator is represented by fixed XOY co-ordinate 
frame. Manipulator is considered slender. So, transverse shear and rotary inertia 
effects are neglected allowing it to be treated as an Euler-Bernoulli beam. Beam is 
assumed to vibrate dominantly in horizontal plane (XOY), neglecting gravity effects 
(acting in flap wise direction). 

Consider an infinitesimal link element P on the manipulator at a distance ‘x’ 
from the hub. Position of the element P with respect to inertial frame of reference 
(XOY) after having  rigid body motion θ(t) (rotation of moving frame ROS and trans 

2 

 



15th National Conference on Machines and Mechanisms  NaCoMM2011-123 

 

-verse deflection =w(x, t) is given by the position vector P (x,w) with respect to the 
fixed frame 

   ˆ ˆcos sin i sin cos jOP x w x w       


rP            (1) 

and its square of the velocity can be expressed as  

 2 2 2 2 2 2V x w wP       rP .wx
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                                  (2) 

By approximating 2 2x w x   for small transverse deflection 

( ),x w magnitude of velocity of the element P (VP) can be obtained from 

Equation 1 as  
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Kinetic energy (K), Potential Energy (U) and Work done on the system (W) are  
given by                  
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Using Extended Hamilton’s principle, variational form for the equation of motion of 
the dynamic system is given by 
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this gives  
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where m (mass per unit length) and I are function of  x and transverse load is the 
function of  both x and t. The following geometry boundary conditions act at the 
torque end side:  

w(0, t) =0    &   0
0
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The following natural boundary conditions act at the free end:  
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In the FEM formulation the manipulator is divided into 20 elements, each 
element having five degrees of freedom as shown in Figure 1(b). In the figure,   is 

the hub rotation and  are the transverse deflection and slopes at the 

first and second nodes of the element. Using Galerkin’s FEM approach with W as the 
weight function and v as the vertical deflection, weak form of the differential 
equation for an element is given by (from Equation 6) 
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         (10)  
Approximate vertical deflection including rigid body motion ( )  is expressed in 

matrix form 
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where x is the local coordinate, h the element length and N1, N2, N3 and N4 are 
known as the Hermitian shape functions and Galerkin’s  weight function (W) is 
approxi- mated in same fashion as v. 

Effect of hub mass and payload mass is incorporated in the global mass matrix and 
stiffness matrix using Dirac-delta function as described by Dixit et al. [11]. Hub 
mass and tip mass/payload is defined in terms of β (ratio of hub mass to beam mass) 
and μ (ratio of payload to beam mass). Equation 10 can be expressed in matrix form:  

     .e eM u K u F        e

,e

                               (12) 

Element system damping is employed using Rayleigh damping giving element 
damping matrix  

[ ] [ ] [ ]e eC M K                                            (13) 

where [ eM ], [ eK ] and eF  are the element mass matrix, stiffness matrix and 

element load vector and and   are the constants determined from different modal 

damping ratios. After assembling element equations, the global system governing 
equation can be expressed as             

   [ ] [ ] [ ]{ } { },M X C X K X F                                 (14) 

where [M], [C] and [K] are the global mass, damping and stiffness matrices 
respectively. Global load vector {F} and global nodal displacement vector {X} are 
given by  

             (15)      N N1 1
TT

00...00 and . . .F T X w w w w   

Neglecting damping matrix and load vector, Equation 14 becomes standard 
eigenvalue problem, which is solved to obtain natural frequencies of the system. The 
Newmark integration scheme is basically the extension of the linear acceleration 
method. It is a constant average acceleration scheme. Using Newmark’s method, 

transverse deflection w, rigid body motion θ and its derivative   are obtained. 

3 Optimization Procedure  
Minimization of maximum dynamic tip deflection is considered as an objective for 
high speed operation of the robotic system. Minimization of static deflection as well 
as mass of the uniform beam manipulator is kept constraints. General form of an 
optimization problem is expressed as 

Minimize       f(X),                                                    (16a) 
                                               subject to      

  * 0M M                                                   (16b) 
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                                         * 0                                                        (16c) 
                                                     and     

L UX X X                                                 (16d) 
where   X = [d1   d2 ….. d20]T

  is a design vector with d i  indicating diameter of the ith  
finite element,  f(X) indicates the objective function (maximum dynamic tip 

deflection of single link flexible manipulator). LX and UX are the vectors of lower 

and upper bounds of design variables respectively. M  is the mass of the optimized 

manipulator, *M  is the prescribed mass of the uniform beam manipulator and tip , 

*
tip  are the static tip deflection of the optimized manipulator and uniform beam 

manipulator respectively. The MATLAB function “fmincon” uses SQP for 
constrained optimization of nonlinear function. 

4 Results and Discussion 
A comparative dynamic analysis has been carried out 
for shape optimized single link revolute flexible 
manipulator. For the numerical study, a manipulator 
having uniform diameter 10 mm, length  750 mm,  
mass 159.6 gm,  Young’s  modulus of elasticity 71 
GPa is considered.  Its modal damping ratios for the 
first and second mode are taken as 0.011 and 0.029 
respectively based on Dixit et al. [11]. Optimized 
beams are   subjected to a bang-bang  torque   of magni                                                                                              
-tude 0.5 N-m (Figure 2) about the axis of rotation.                Figure 2: Bang-2 torque 

 

Figure 3: Optimized shapes for different payloads (µ) 
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Figure 4: Comparison of  static beam deflection, beam optimized at (a) µ=0, (b) 
µ=0.1, (c) µ=0.3 & (d) µ=0.5 

 

Figure 5 : Comparison of  dynamic tip deflection due to bang-2 input torque, beam optimized 
at (a) µ=0, (b) µ=0.1, (c) µ=0.3 & (d) µ=0.5 
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Figure 6: Comparison of dynamic tip deflection due to sinusoidal input torque, beam 
optimized at (a) µ=0, (b) µ=0.1, (c) µ=0.3 & (d) µ=0.5 (with corresponding payload) 

 

Figure 7: Comparison of dynamic tip deflection due to bang-2 input torque, beam 
optimized at µ=0 with payload (a) µ=0, (b) µ=0.1, (c) µ=0.3 & (d) µ=0.5 
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For comparative static tip deflections, 1 N static load is considered at the end of 
the manipulator. Optimized shapes of the manipulator as per the optimization 
problem defined in Equation 16 are plotted in Figure 3. There are different optimal 
shapes for different payloads. These shapes gives minimize the maximum dynamic 
tip deflection. Static tip deflections due to applied 1N force at the tip are shown is 
Figure 4. Optimized beams deflected lesser than the static tip deflection of the 
uniform beam manipulator which well satisfies the constraint imposed in the 
optimization problem definition. Dynamic tip deflection due to bang-2 torque is 
shown in the Figure 5. All optimized beams have minimum tip deflection than the 
uniform beam manipulator for the corresponding payload for which it is optimized. 
Dynamic tip deflections are also plotted for sinusoidal torque 

in Figure 6. It is observed same 

trends of behaviour of the optimized beams under different excitations. Dynamic tip 
deflections of the beam optimized for no payload  (µ=0) as shown in Figure 7. It 
doesn’t give minimum tip deflection than uniform beam manipulator for higher 
payload cases. However, beam optimized for higher payload always gives minimum 
of maximum dynamic tip deflection with respect to that of uniform beam 
manipulator for rang of payloads with little higher maximum dynamic tip deflection 
at lower payloads.  

( 0.5sin10 , 0 time( ) 0.2, else 0)T t t T    

5 Conclusion 
In this work, the problem of minimization of maximum dynamic tip deflection is 
carried out through linear modeling of single link flexible revolute manipulator. 
Thorough FE analysis has been conducted and successive SQP iteration scheme has 
been used to solve constrained optimum shape of the flexible manipulator to 
minimize the maximum dynamic tip deflection.  

There are different optimal shapes for different payloads. These optimum 
shapes give minimum of the maximum dynamic tip deflection for that particular 
payload. Beam optimized for higher payload always gives minimum of maximum 
dynamic tip deflection with respect to that of uniform beam manipulator for range of 
payloads but not the beam optimized for no payload (µ=0) case. 
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