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Abstract 

 
A recursive dynamic modeling of a three-DOF parallel robot, namely, three-

Revolute-Prismatic-Spherical (3-RPS) parallel manipulator is reported in this work. 
Euler parameters are utilized to define the 3-DOF orientation of its moving 
platform, because the coordinates are free of singularity. For the dynamic modeling, 
the concept of the Decoupled Natural Orthogonal complement (DeNOC) matrices is 
employed. The necessity of the concept is to use a set of independent coordinates, 
while Euler parameters are not. Hence, the improved recursive dynamic modeling 
reported somewhere else is utilized. This is especially useful for forward dynamic 
modeling. Finally, the results obtained are compared with those achieved from 
ADAMS model to validate them.  

Keywords: 3-RPS manipulator; Euler parameters; Dynamic modeling, DeNOC 
matrices;  

1 Introduction 
Parallel manipulators have more advantages over serial chains. Some of the 
advantages are that they have higher speed, higher stiffness, and larger load capacity. 
On the other hand, they have special usages, which serial robot are not be able to 
accomplish. Therefore, in the last decades, many researchers have been working on 
kinematics and dynamics of parallel structure mechanisms. Dynamic analysis plays 
an important role in predicting the behavior of such mechanical systems and 
achieving their best performance. 

There are many different approaches to derive the equations of motion for 
mechanisms. Two popular approaches used for dynamic modeling are (i) Newton-
Euler (NE) formulation and (ii) Euler-Lagrange (EL) formulation [1]. The NE 
formulation requires the equations of motion to be written for each body of 
manipulator hence leading to a large number of equations; therefore, it is not useful 
for large systems. The EL formulation allows the elimination of all reaction forces 
and moments, so it is a simplified approach for simulation but requires complex 
partial derivatives. Alternatively, there are several methods that start with NE 
formulation and end up with EL equations. One such methodology uses the 
Decoupled Natural Orthogonal Complement (DeNOC) matrices [2, 3]. One of the 
major advantages of using the DeNOC matrices is the availability of recursive 
dynamics even for general closed- loop systems [4, 5]. 

Three-RPS mechanism shown in Fig. (1), is one of the lower-mobility parallel 
manipulators, whose DOF is three. The manipulator has three legs, while each one is 
a serial kinematic chain consisting of a revolute joint (R), a prismatic joint (P), and a 
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spherical joint (S). Three-RPS parallel manipulator was proposed by Hunt, [6], for 
the first time. Lee and Shah, [7], analyzed the inverse and the forward kinematics of 
the manipulator. The velocity and the acceleration relationship between the 
independent output motions and three input parameters in close form of the 
mechanism were established by Fang and Huang in [8]. Huang in [9] presented a 
method based on the screw theory to determine the possible motion characteristics 
for 3-RPS mechanism. [10] Investigated the kinematic of the 3-RPS parallel 
manipulator that its platform orientation described in terms of Euler angles. 

 
Figure 1: Spatial 3-RPS parallel manipulator 

Several methods have been applied to formulate the dynamic of 3-RPS parallel 
manipulator. [11 and 12] used Lagrange formulation to derive the equations of 
motion of the manipulator. [13, 14] presented a dynamic modeling based on virtual 
work principle.  

In this paper, dynamic analysis of the 3-RPS parallel manipulator using DeNOC 
matrices is presented, while the relative orientations due to spherical joints are 
represented in terms of relative Euler parameters. It is well-known that using the 
Euler parameters to define orientation of a moving coordinate system with respect to 
(w.r.t) another one is advantageous, because there is no inherent geometrical 
singularity in their equations [15]. Hence, in [5], kinematic and dynamic modeling of 
a multibody system having spherical joints was described using Euler parameters. 
The authors solved the kinematics of the same manipulator in [16].   

2 Equations of Motion 
In this section, some definitions and concepts associated with the dynamic 
formulation of an n-link open chain serial system using the Decoupled Natural 
Orthogonal Complement (DeNOC) matrices is explained. 

 
Figure 2: An n-link serial manipulator 

Figure (2) shows the ith link of an n-link serial chain. Oi is the origin of 
coordinate system, which is attached to the ith link at the joint connected the ith and 
the (i-1)st links. The mass center of the ith link is considered at Ci. Further, the 3-
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dimensional position vectors di from Oi to the mass center of the ith link, and ri from 
the mass center of the ith link to Oi+1 are defined. 
The 6-dimensional twist and wrench vector associated with the ith link are also 
identified as 

𝐭𝐭i = �𝛚𝛚i
𝐯𝐯i
�          and       𝐰𝐰i = �𝐧𝐧i

𝐟𝐟i
�                                         (1) 

where ωi and vi are the 3-dimensional vectors of angular velocity and linear velocity 
of point Oi, respectively, while ni and fi are the 3-dimensional vectors of resultant 
moment about Oi, and the resultant force at Oi, in that order. Note that the twist of 
the ith link can be written recursively in terms of the twist of link i-1, as 

𝐭𝐭i = 𝐀𝐀i,i−1𝐭𝐭i−1 + 𝐩𝐩i𝛉̇𝛉i                                               (2) 
where 

𝐀𝐀i,i−1 = � 𝟏𝟏
𝐚𝐚�i ,i−1

𝐎𝐎
𝟏𝟏� ;   𝐩𝐩i = �𝐮𝐮i

𝟎𝟎 � for revolute; 𝐩𝐩i = �𝟎𝟎𝐮𝐮i
�   for prismatic joints       (3) 

In Eq. (3), 𝐚𝐚�i,i−1 is the 3×3 cross-product matrix associated with the vector 𝐚𝐚i,i−1, 
which defines position Oi-1 from Oi. Moreover, O and 1 are the 3×3 zero and identity 
matrices, respectively, whereas, 0 is the 3-dimensional vector of zeros. Furthermore, 
ui is 3-dimensional unit vector parallel to the ith joint axis. 

If the ith link connected to the (i-1)st link by a spherical joint, where Euler 
parameters are used define the rotation, Eq. (2) can be written as 

𝐭𝐭i = 𝐀𝐀i,i−1𝐭𝐭i−1 + 𝐏𝐏i 𝐞̇𝐞i                                               (4) 
while Pi is 6×3 joint-motion propagation matrix that is defined as 

𝐏𝐏i = �𝐆𝐆i
∗

𝐎𝐎
� ; where 𝐆𝐆i

∗ = �𝐑𝐑i,i−1 + 𝟏𝟏�/e0i                              (5) 
in which Ri,i-1 is the rotation matrix that transform a vector from the frame connected 
to the ith body into the frame connected to the (i-1)th body. 

The generalized twist of the entire system for the n rigid bodies in the system is 
written as 

𝐭𝐭 = 𝐍𝐍𝛉̇𝛉 where   𝐍𝐍 = 𝐍𝐍l𝐍𝐍d                                            (6) 
Matrices Nl and Nd, are the 6n×6n lower triangular matrix, and the 6n×(r+3s) 

diagonal matrix, respectively, where r and s represent the number of one-DOF 
revolute/prismatic joints and three-DOF spherical joints, respectively. Hence, Nl and 
Nd are defined by 

𝐍𝐍l =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1
𝐀𝐀21 1
⋮ ⋱
𝐀𝐀i,1 ⋯ 𝐀𝐀i,i−1 1
⋮ ⋱

𝐀𝐀n,1 … 𝐀𝐀n,n−1 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

;𝐍𝐍d =

⎣
⎢
⎢
⎢
⎢
⎡𝐏𝐏1

𝐏𝐏2
⋱

𝐏𝐏i
⋱

𝐏𝐏n⎦
⎥
⎥
⎥
⎥
⎤

    (7) 

where Pi is the joint-motion propagation matrix for the three-DOF spherical joints 
obtained from Eq. (5), or the joint-motion propagation vector for the one-DOF 
revolute/prismatic joints, pi as presented in Eq. (3), depending on the ith link 
connected to its previous one by a three-DOF joint or a one-DOF joint. Accordingly, 
θ of Eq. (6), is defined as the (r+3s)-dimensional vector of independent generalized 
speeds, which contains θ s for revolute/prismatic joints associated to vector p in 
matrix Nd, and e s for spherical joints corresponding to P elements in matrix Nd.  
For the ith link, the Newton-Euler equations of motion are expressed as 

 𝐌𝐌i 𝐭̇𝐭i + 𝐖𝐖i𝐌𝐌i𝐄𝐄i𝐭𝐭i = 𝐰𝐰i                                                   (8) 
where the 6×6 matrices, Mi, Wi, and Ei, are given by 

𝐌𝐌i = � 𝐈𝐈i
−mi𝐝𝐝i

mi𝐝𝐝i
mi𝟏𝟏

�   ;    𝐖𝐖i = �𝛚𝛚� i
𝟎𝟎

𝟎𝟎
𝛚𝛚� i
�     ;      𝐄𝐄i = �𝟏𝟏𝟎𝟎

𝟎𝟎
𝟎𝟎�                           (9) 
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in which Ii is the 3×3 inertia tensor for the ith link about Oi, and mi is its mass. For a 
multibody system with n rigid links, NE equations of motion are written as 

𝐌𝐌𝐭̇𝐭 + 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 = 𝐰𝐰                                                   (10)  
where the 6n×6n matrices, M, W, E, and the 6n-dimensional vectors, t and w, are 
defined as follows 
𝐌𝐌 = diag[𝐌𝐌1,𝐌𝐌2, … ,𝐌𝐌n ] ;  𝐖𝐖 = diag[𝐖𝐖1,𝐖𝐖2, … ,𝐖𝐖n] ;𝐄𝐄 = diag[𝐄𝐄1,𝐄𝐄2, … ,𝐄𝐄n] 

𝐭𝐭 = [𝐭𝐭1
T, 𝐭𝐭2

T , … , 𝐭𝐭n
T]T   ;     𝐰𝐰 = [𝐰𝐰1

T ,𝐰𝐰2
T, … ,𝐰𝐰n

T]T                     (11) 
As shown in [17], if both sides of Eq. (10) are pre-multiplied by NT, the wrench 

due to the reaction forces are vanished, and Eq. (10) yield to 
𝐍𝐍T(𝐌𝐌𝐭̇𝐭 + 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖) = 𝐍𝐍T𝐰𝐰e                                            (12) 

For a closed-loop system, by cutting appropriate joints and substituting 
constraint forces or moments in terms of Lagrange multipliers [5], equations of 
motion are rewritten as 

𝐍𝐍T(𝐌𝐌𝐭̇𝐭 + 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖) = 𝐍𝐍T(𝐰𝐰e + 𝐰𝐰λ)                                    (13) 
in which the associated vectors and matrices are 
𝐌𝐌 = diag[𝐌𝐌I ,𝐌𝐌II , … ,𝐌𝐌O ] ;  𝐖𝐖 = diag[𝐖𝐖I,𝐖𝐖II , … ,𝐖𝐖O] ;𝐄𝐄 = diag[𝐄𝐄I ,𝐄𝐄II , … ,𝐄𝐄O ] 

𝐍𝐍l = diag[𝐍𝐍l I ,𝐍𝐍l II , … ,𝐍𝐍l O ] ;  𝐍𝐍d = diag[𝐍𝐍d I,𝐍𝐍d II , … ,𝐍𝐍d O ]            (14) 
and 

𝐭𝐭 = �𝐭𝐭I
T , 𝐭𝐭II

T , … , 𝐭𝐭O
T �T  𝐰𝐰e = �𝐰𝐰e

I
T,𝐰𝐰e

II
T , … ,𝐰𝐰e

O
T �

T
;  𝐰𝐰λ = �𝐰𝐰λ

I
T ,𝐰𝐰λ

II
T , … ,𝐰𝐰λ

O
T �

T
(15) 

Matrices MI, MII, and MO are the generalized mass matrices, as defined in Eq. (11), 
for the opened subsystems. Other matrices and vectors are similarly defined. 

3 Kinematic Modeling 
Figure (1) Shows a 3-RPS parallel manipulator, which consists of a moving 
platform, a fixed base and three extendable legs. Each leg alone is a serial kinematic 
chain consisting of a revolute joint (R) at the base side and a spherical joint (S) 
attached to the platform. A prismatic joint (P) allows the lengths of the legs to be 
changed. The axis of each revolute joint is tangential to the circumscribed circle of 
the fixed base. In this mechanism, the links are numbered as #1 … #8 and the joints 
by 1 … 9. 

The number of variables required to specify the platform configuration is 
fourteen, of which, three are independent. Therefore, eleven constraint equations are 
needed to solve the kinematics of the 3-RPS platform. The kinematic constraint 
equations are expressed as:   

𝚽𝚽(𝐪𝐪) = 𝟎𝟎                                                        (16) 
Since, the constraint equations of the 3-RPS parallel manipulator are explained and 
solved in [16] completely; it is avoided to bring them here again to keep the size of 
paper reasonable.   

4 Dynamic Modeling 
The first step for dynamic analysis of the 3-RPS parallel manipulator using DeNOC 
matrices, as shown in Fig. (3), is opening the closed-loops by cutting joints 8 and 9, 
which are located at point B2 and B3, respectively. Therefore, the system is converted 
into three serial open chains, namely, #4-#5, #6-#7, and #2-#3-#8, which are 
considered as subsystems I, II, and III, respectively. Then, the cut joints are 
substituted with appropriate Lagrange multipliers. Joint 8 is a spherical joint that 
only have a spatial reaction force,𝐟𝐟85

λ  whose components along x5, y5, and z5 are f85x
λ , 

f85y
λ , and f85z

λ  , respectively, applied to #5 by #8. Similarly, joint 9 is also a spherical 
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joint that only have a spatial reaction force,𝐟𝐟87
λ  whose components along x7, y7, and 

z7 are f87x
λ , f87y

λ , and f87z
λ  , respectively, applied to #7 by #8. 

 
Figure 3: Reaction forces at cut joints 8 and 9 

Equations of motion for each open subsystem are written using Eq. (13). The 
equations of motion for subsystem I are followed as 

𝐍𝐍I
T(𝐌𝐌I𝐭𝐭 İ + 𝐖𝐖I𝐌𝐌I𝐄𝐄I𝐭𝐭I) = 𝐍𝐍I

T(𝐰𝐰I
e + 𝐰𝐰I

λ)                            (17) 
where the 12×12 generalized mass matrix, MI, generalized angular velocity of the 
subsystem, WI, and matrix E are found as 

𝐌𝐌I = diag[𝐌𝐌4,𝐌𝐌5] ; 𝐖𝐖I = diag[𝐖𝐖4,𝐖𝐖5] ;𝐄𝐄I = diag[𝐄𝐄4,𝐄𝐄5]           (18) 
In Eq. (18), M4 and M5 are the 6×6 generalized mass matrices of #4 and #5, 

respectively, while W4 and W5 are the 6×6 matrices that depend on angular velocity 
of #4 and #5, respectively, and E4 and E5 are equal and constant, as shown in Eq. (9). 
The twist associated with the subsystem is defined as: 

𝐭𝐭I = [𝐭𝐭4
T    𝐭𝐭5

T]T                                                     (19) 
where t4 and t5 are the twists of #4 and #5, respectively. In other words, Eq. (19) is 
obtained as  

𝐭𝐭I = 𝐍𝐍I𝛉̇𝛉I                                                       (20) 
where 𝛉̇𝛉I = [θ̇2 ḋ2]T  is the vector of independent generalized speeds. Next, matrix 
N for subsystem I is obtained by the multiplication of its matrices Nl and Nd, as 
follows: 

𝐍𝐍I = 𝐍𝐍l I𝐍𝐍d I = � 𝐩𝐩2 𝟎𝟎
𝐀𝐀54𝐩𝐩2 𝐩𝐩5

�                                     (21) 

where p2 and p5 are the joint propagation vectors for revolute joint 2 and prismatic 
joint 5 shown in Eq. (3), respectively. Also A54 is the 6×6 twist propagation matrix 
which transfers the twist of #4 to #5. By neglecting the gravity, the wrench due to 
external forces is followed as 

𝐰𝐰I
e = �𝐰𝐰e

4
T    𝐰𝐰e

5
T�

T
                                           (22) 

where 

𝐰𝐰4
e = 𝟎𝟎   and  𝐰𝐰5

e = � 𝐎𝐎
𝐑𝐑41𝐑𝐑54[0 0 fp5]T�                       (23) 

In Eq.(23), fp5 is the driving force at prismatic joint 5. The wrench due to Lagrange 
multipliers related to the subsystem is 

𝐰𝐰I
λ = �𝐰𝐰λ

4
T    𝐰𝐰λ

5
T�

T
     where   𝐰𝐰4

λ = 𝟎𝟎   and   𝐰𝐰5
λ = 𝐀𝐀58

′ 𝐰𝐰8
λ            (24)                               

𝐰𝐰8
λ  is the wrench due to Lagrange multipliers at joint 8, i.e., 

𝐰𝐰8
λ = �

𝐎𝐎
𝐑𝐑41𝐑𝐑54�𝐟𝐟85

λ ��    and   �𝐟𝐟85
λ � = �f85x

λ f85y
λ f85z

λ �
T
              (25) 
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Similar to the equations of motion for subsystem I, the same for subsystem II are 
written while links #4 and #5 are substituted by links #6 and #7, respectively. It is 
avoided to explain it here again since both subsystems are completely comparable.  

The final subsystem is III, whose equations of motion are written similar to Eq. 
(17), where MIII, WIII, and EIII are defined like Eq. (18). The twist associated with 
the subsystem is defined as 

𝐭𝐭III = [𝐭𝐭2
T 𝐭𝐭3

T 𝐭𝐭8
T ]T                                             (26) 

which be obtained as  
𝐭𝐭III = 𝐍𝐍III 𝛉̇𝛉III   where  𝛉̇𝛉III = �θ̇1 ḋ1 𝐞̇𝐞3�

T                          (27) 
Matrix NIII is identified as 

𝐍𝐍III = �
𝐩𝐩1 𝟎𝟎 𝐎𝐎

𝐀𝐀32𝐩𝐩1 𝐩𝐩4 𝐎𝐎
𝐀𝐀82𝐩𝐩1 𝐀𝐀83𝐩𝐩4 𝐏𝐏7

�                                        (28) 

where p1 and p4 are the joint propagation vectors of the revolute joint 1 and prismatic 
joint 4, respectively, and P7 is the joint propagation matrix of the spherical joint 7, as 
given by 

𝐏𝐏7 = �𝐑𝐑21𝐆𝐆7
∗

𝐎𝐎 � ; where 𝐆𝐆7
∗ = [𝐑𝐑83 + 𝟏𝟏]/e30                            (29)  

The wrenches due to external forces and Lagrange multipliers are 
𝐰𝐰III

e = �𝐰𝐰e
2
T 𝐰𝐰e

3
T 𝐰𝐰e

8
T�T   , where 

𝐰𝐰2
e = 𝟎𝟎   and  𝐰𝐰3

e = � 𝐎𝐎
𝐑𝐑21𝐑𝐑32[0 0 fp4]T�   and 𝐰𝐰8

e = 𝟎𝟎                 (30) 

and 
𝐰𝐰III
λ = �𝐰𝐰λ

2
T 𝐰𝐰λ

3
T 𝐰𝐰λ

8
T�

T
 , in which                                            

𝐰𝐰2
λ = 𝐰𝐰3

λ = 𝟎𝟎   and   𝐰𝐰8
λ = −𝐀𝐀78

′ 𝐰𝐰8
λ − 𝐀𝐀79

′ 𝐰𝐰9
λ                         (31) 

In Eq. (31), 𝐰𝐰8
λ  and 𝐰𝐰9

λ  are already defined. Now, the equations of motion for 
the whole system can be written as 

𝐍𝐍T(𝐌𝐌𝐭̇𝐭 + 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖) = 𝐍𝐍T(𝐰𝐰e + 𝐰𝐰λ)                                    (32) 
in which the associated matrices and vectors in Eq. (32) are as follows 

𝐌𝐌 = diag[𝐌𝐌I ,𝐌𝐌II ,𝐌𝐌III ] ;  𝐖𝐖 = diag[𝐖𝐖I,𝐖𝐖II ,𝐖𝐖III ] ;𝐄𝐄 = diag[𝐄𝐄I ,𝐄𝐄II ,𝐄𝐄III ] 
𝐍𝐍 = diag[𝐍𝐍I,𝐍𝐍II ,𝐍𝐍III ]                                              (33) 

and 

𝐭𝐭 = �𝐭𝐭I
T , 𝐭𝐭II

T , 𝐭𝐭III
T �T  𝐰𝐰e = �𝐰𝐰e

I
T ,𝐰𝐰e

II
T ,𝐰𝐰e

III
T �

T
;  𝐰𝐰λ = �𝐰𝐰λ

I
T ,𝐰𝐰λ

II
T ,𝐰𝐰λ

III
T �

T
      (34) 

The equations of motion for the 3-RPS parallel manipulator, i.e. Eq. (32), can be 
used to obtain the Lagrange multipliers and the three driving forces at the prismatic 
joints that indicate in Fig. (4). To illustrate dynamic analysis of the manipulator, the 
system parameters used for computation are given as: 

m2= m4= m6=0.123kg,   m3= m5= m7=0.392kg,   m8=1.013kg 
𝐈𝐈2 = 𝐈𝐈4 = 𝐈𝐈6 = diag[1.53 1.63 × 103 1.63 × 103]  

 𝐈𝐈3 = 𝐈𝐈5 = 𝐈𝐈7 = diag[3.36 × 103 3.36 × 103 19.61]  
 𝐈𝐈8 = diag[1.28 × 103 11.41 × 103 12.67 × 103]  

𝐝𝐝1 = 10
π
3

time ;    𝐝𝐝2 = 𝐝𝐝3 = −10
π
3

time 
where mi and Ii are mass and inertia matrix of the ith link, respectively, and di is 
actuator input of ith prismatic joint. 

In order to validate the results, a CAD model is developed in ADAMS software 
environment. The outputs of the ADAMS model are also shown in the same figures 
that indicate good agreement of the analytical results and results of ADAMS model. 
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(a) Driving force at each prismatic joint 

 
(b) The x, y and z components of reaction force at joint 8  

 
(c) The x, y and z components of reaction force at joint 9  

Figure 4: Comparison of analytical and ADAMS inverse dynamic results of the 
3-RPS parallel manipulator 

5 Conclusions 
In this paper, the dynamic analysis of a three-leg structure, namely, 3-RPS parallel 
manipulator is proposed. Euler parameters are utilized to define orientation of its 
platform due to spherical joints motion. The advantage of the formulation is its 
ability to take away the singularity of the manipulator, since it is well-known that 
there is no inherent geometrical singularity in their equations. Then, equations of 
motion are developed using the concept of DeNOC matrices. The results are 
compared with those of the manipulator simulation in ADAMS environment. The 
outcome demonstrates good agreement between the results obtained from the 
algorithm and those are found from ADAMS software. 
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