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Abstract

Trajectory-tracking control of parallel manipulators is more difficultrtiia
the case of serial ones due to the presence of the loop-closure aussiiad
constraint forces resulting from them. One needs to eliminate theses forgret
to the equation of motion, and then apply a control scheme.

In this paper, such a control scheme is presented through applicatian on
semi-regular Stewart platform manipulator (SRSPM). The manipulatersha
degrees-of-freedom; however, it is modelled by a system of 18ledumnlinear
ordinary differential equations (ODE) using the constrained Lagrarfgianula-
tion. The model is then linearised through feedback, and controlled byearlin
PD servo scheme. Numerical simulations over a non-singular path tsiad\the
scheme is fairly accurate, at the cost of being computationally exmen3ike
scheme is general in nature, and as such, it is expected to work in thefaatber
parallel manipulators as well.

Keywords: Stewart platform, Computed torque control, Feedback linearisation,
Control-law partitioning, Parallel manipulator, Lagrangian dynamicggectary-
tracking

1 Introduction

The task of trajectory-tracking in parallel manipulatagenerally more complicated
in parallel manipulators than in their serial counterpa®e reason for this is the
geometric complexity of their singularity manifold, whichakes it difficult to find
a non-singular path connecting two arbitrary configurationthe workspace. Even
when such a path is obtained, accurate tracking requiregritierstanding of the dy-
namic model of the manipulator, which in turn involves atéda as well as passive
links. In order to complete the dynamic model, one needs titfia motion of the pas-
sive links in addition to the actuated ones. While this candr@edn principle using
the forward kinematic analysis, in manipulators such asStiegvart platform (SPM),
forward kinematics is a hard problem to solve.

However, very structure of a parallel manipulator provideseasier alternative
to the above method. Since each leg of a parallel maniputationects the moving
platform to the fixed base in an independent manner, thesaydnematic problem is
naturallydecoupled If the end-effector’s (i.e., the moving platform’s) poseknown
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at an instant of time, then the active as well as the passikelbsitions can be found
out easily from inverse kinematics (see, e.g., [1]). Thisved for the formulation of
the equation of motion of the manipulator ascmstrained Lagrangian systesubject
to theloop-closureconstraints. Though the model is in higher dimensions than t
degree-of-freedom (DoF) (due to the presence of passikse)liit affords a dynamic
model that can be included in the trajectory-tracking sahem

Such a scheme is adopted in this paper to apply a trajeataciihg control to
an SRSPM. Acomputed torque schenie adopted in which inertia, Coriolis forces
are representeeixactly This is in contrast with a related work [2], where an approx-
imation to such terms have been used. In [3], an optimal obsttheme has been
developed in theask spacewhere the forward kinematics is approximated by poly-
nomials using a predicted square error cost function. Inddthors have discussed
an extended torque control scheme where sensors are iogwdu passive joints and
the redundant information is used to simplify the modeldobscheme. However, that
would arise in a physical implementation of the scheme hatebeen discussed as
the model is verified only by a simulation. In the present wdhle trajectory cho-
sen is verified to be non-singular following the method diésdr in been described
in [5]. Numerical simulations performed show that the tcipey can be tracked to
an accuracy ot0~®m. However, it requires high temporal resolution, and hehi i
computationally expensive.

The rest of the paper is organised as follows: Section 2 itescthe development
of the kinematic model of the SRSPM. In Section 3, the dynamodel is presented,
which forms the back-bone of the model-based control schesented in Section 4.
The simulation results are discussed in Section 5, follolethe conclusions in Sec-
tion 6.

2 Kinematic Model of the SRSPM

The geometry of the SRSPM manipulator studied in this pagrewn in Fig. (1a)) is
identical to the one presented in [6].

2.1 Geometry and loop-closure

The top and the bottom platforms are semi-regular hexagontained within cir-
cles of radii2r, and2r; respectively, with the angular separation between the leg-
connection points a&y, and2~; respectively. The legs are UPS in structure, with the
P-joint actuated in each case. The geometry of a single Ewpisn in Fig. (2). Théth

leg vector is found ag = (0,0,/;)7 initslocal frame. Two successive rotations, given
by R,(¢;)R,(v;) account for the U-joint at the base of each leg. Thus cthdigu-

ration spaceof the manipulator is given by = (17, ¢™)7, wherel = (Iy,...,ls)"
andg = (¢1,...,96,%1,---,1%)T. The loop-closure constraints in global frame are:
p; =b; +1;
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(a) Geometry of the SRSPM (b) Geometry of the top platform

Figure 1: Schematic of the SRSPM (adopted from [6])

(a) The:th leg in the global frame (b) Geometric details of a

single leg

Figure 2: Geometry of a leg of the SRSPM

wherep = (z,y,2)” and R € SO(3) denote the position of the centre of the top
platform, and the orientation of the top platform with reste the fixed base, respec-
tively. The top and bottom ends of thieh leg are given bya; andb; respectively.
Further,R is parametrised in terms of thkodrigue’s parameters: = (cy, co, c3)”
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2.2 Velocity kinematics
From Eqg. (1), one finds:

p; = bi + Ry((bz)RI(wz)((L 07 1)T and (2)
6
p=1/6) p 3
1=1
Velocity of the centre of the top platform is found by timefdientiation:
. . op
p:Jpqqa Jpq:87q 4)

Similarly, mass-centres of the top and the bottom partseitil leg are respectively
given by (see Fig.(2)):

Pui = bi + Ry((bl)Rx(wz)lau lai = (07 07 lai)T (5)
Py = bi + Ry (¢:) Ry (¥i)lbi, Ly = (0,0,1; — lg;)" (6)

Velocities of these points are obtained in terms of the epwading Jacobian matrices:

. ) op,; . . opy;
‘:Jaia']ai: andp,. = J i’J i = % 7
Dy paqid; J paq dq DPyi pbqid; J pbq dq (7)

Finding the angular velocities of the legs are simpler, ab Iparts of the prismatic
joint have the same angular velocity. The rotation matrigath leg is given byR;; =
R, (¢;)R.(1;), and the correspondirmdy-fixed angular velocity matrif, € so(3)
is given by:

Q;, = RLRy; (8)
Extracting the angular velocity vector from tRex 3 skew-symmetric matrix:

Wi = leqiq (9)
Similarly, one obtains the angular velocity of the top path from the knowledge of
its orientation given byR:
w=Juqd (10)

Computations of these Jacobian matrices typically regbhigeuse of a Computer Al-
gebra System (CAS) as computing so many partial derivabyesand is tedious as
well as error-prone. In this work, a commercial CA&t henat i ca [7] has been

used for all symbolic computations.

3 Dynamic Mode of the Manipulator

Theconstrained Lagrangian formulatiois used to develop a model of the manipula-
tor's dynamics.
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3.1 Forward dynamics

The Lagrangian of the manipulatat(q,q) = T — V, is computed in terms of the
kinetic energyT’, and the potential energly. The kinetic energy is a sum of the
kinetic energies of the individual legs, as well as that eftibp platform:

1
T = 5(1T(Il +1,)q, where I, = J} myJpg + T 5 1T g (12)

6
L= 3 (Thgmoid mai + T s Lot + L) Fostgi + TpugimaiTpagi ) (12)
=1
where my;, mq, m, are the masses of lower and upper parts ofsheleg, and
the platform, respectively. Furtherl,;, I,.;, I, are the inertia matrices of lower
and upper parts of théh legs, and the top platform in the respective body-fixed
frames, respectively. For calculating the potential epéfgthe base platform height
is taken as the datum. The total potential energy is cakedlas the sum of the po-
tential energies of each of the moving parig: = Z?:I(Vbi + Vii) + V,, where,
Vi, Vai, Vo (i = 1,...,6) are the potential kinetic energies of the lower and upper
links of the legs, and the platform, respectively.
The equations of mation for the constrained system withldlog@-closurecon-
straintsn(q) = 0 are derived as (see, e.g., [1]):

d (0L oL on .
— — =F+ (JpgN)i, Jpg ==, i=1,...,12 13
dt (3%) 0q;  (Tna) 9 dg ' (13

whereJ ,,4 is the constraint Jacobia#;s are the externally applied leg forces, axd
is the vector oLagrange multipliersin a matrix form, Eq. (13) can be written as

M(q.q)q+ C(q,q)q + G(q) = F + J] A (14)

Here,M(q,q) = I, + I, is thel8 x 18 mass matrixC'(g, g) is the centripetal and
Coriolis force matrix, which can be derived fraM (see, e.g., [1])G(q) = %—‘; is the

vector of gravitational loads’ is the vector of external forces; aﬂqT]qA is the vector
of constraint forcesThe Lagrange multipliera can be obtained as (see, e.g., [1]):

A=A (Tngd+ TngM ' f), A= JpgM T}

I f=F—Cq—G (15)

Using Eq. (15) in Eq. (14), thisrward dynamic equatiois obtained as:
Mg=f-Jb A (.’J,,qq + T pgM f) (16)

3.2 Inversedynamics

Theinverse dynamic equatione., the expression for the externally applied force for
a certain motion of the manipulator is obtained by some maafjpn of Eq. (16):

Mig = (I-J5,A7 M) f = T3, A T gd
=f = B* (Mi+J5,A" ngd), B= (1 J5,A7 M)

—~F — B* (Mij n J,qu*anq) +Cq+G 17)
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whereI ¢ R'8%!8 js an identity matrix, and-)# denotes thgseudo-inversef a
matrix. It is observed, that aton-singularpoints in the trajectory, the matriB <
R'8*18 has rank 6. This corroborates with the fact that in Eq. (1A)y 6 of the
entries inBF are allowed to béreg, as the mechanism has only those many degrees-
of-freedont. Thus,pseudo-inversaeeds to be used in Eq. (17) rather than inverse.

4 Trajectory-tracking Control
The trajectory is chosen as cubic functions in the coordsat, y, z) of the pointp,
and the Rodrigue’s parametefis, ¢, c3) describing the orientation of the top plat-
form. It is verifieda priori that the chosen path is free of singularities following [5].
A linear (PD) control scheme is adopted for the tracking taftkr feedback-

linearisation of the manipulator’s dynamics (see, e.g., [1]). The follogviassump-
tions are inherent in such schemes: (a) the model is detestiniwith no parametric
uncertainties, (b) there are no unmodelled dynamics, ®igtion, and (c) full state
feedback is available without delay and noise. The requiedrol effort F' is got
from Eq. (17):

BF =Mg+J} A" T+ B(Cq+G) (18)
Assume thaf partitions such thatBF = oF’ + 3, and choose:

a=M,B=J A" Juq+B(Cq+G) (19)
This reduces the manipulator’s dynamics tinaar, decoupled, unit inertia system:

F'=g (20)
A PD control scheme is proposed for the linear system:

F'=q,(t) + Koé(t) + Kpe(t), e(t) = qq(t) — q(t) (21)
whereq,(t) denotes thatlesiredtrajectory, andi,, and K,, denote the velocity and

position gain matrices, respectively. Application of tleatol input in the unit inertia
system results in a second order linear ODE in the erfor.

é(t)+ Kye(t) + K,,e(t) =0 (22)
The gains are chosen so that the errors die outiiti@ally dampedmanner:

K, =k, K,=2/kI, k,>0 (23)

1To study this further, it has been tested, separately, tesagularity whereank (J,4) goes down
by one,rank (B) goes up by the same number.
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5 Simulation Results and Discussions

The mass and inertia properties for the following simuladiavere adopted from [8].
The initial pose is chosen &s;, v, z;) = (0.3520,0.7040, 1.7040), (c14, c24,c31) =
(0.2056,0.3408, 0.5760), while the final pose is given byzs,ys,z¢) = (0.3520,
0.7040,1.7040), (c15,c2r,csr) = (0.4,0.6,0.9) (see Fig. (3)). Two different simula-

Figure 3: Trajectory of the end-effector frame

tions have been performed: fiastmotion where the path is coveredtin= 1 second,
slowmotion where the path is coveredtp = 2 seconds. The value &, is chosen
by numerical trials, and fixed a0o0o0.

Fig. (4) shows sample results from the simulations conduatalifferent speeds
of the top platform. As expected, the tracking errors as a®lhe actuator efforts are
higher for the fast motion than the slow. The plots show thatdrrors are brought
down faster when in slow motion than the fast. This is due of#tt that sampled
values of the non-linear portions of the controller (insile numerical ODE integra-
tor) is closer to the real values in slow motion (assuminglamime steps in both the
simulations).

The CPU time consumed is approximately 10 minutes for therfetion case
and 20 minutes for the slow. There are two reasons for thjighésexpressions fakd
and C are huge in size (i.e., 5.8 MB and 463 MB bkt hemat i ca expressions,
respectively); and (b) very tight error tolerances wereugefior the ODE solver, so as
to obtain very accurate results (i.e., tracking error ofdhder of 10~°m, compared
to errors 0f10% in [2] and 0.68% in [3]), purely for the sake of demonstration. The
computational speed can be enhanced by performing symdioiglifications on the
matricesM, C and by increasing the numerical tolerances to realistiel$ev

6 Conclusions

A study on the trajectory-tracking control of SRSPM has bgessented. It has been
shown that the feedback linearisation scheme with a simplesd?vo part works ef-
fectively, yielding tracking errors in the range tf~5m. It has been observed that the
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formulation involves the inversion of B8 x 18 matrix with rank 6. However, using
the pseudo-inverse allows the computation to proceed ialdestmanner.

The control scheme is applicableanyparallel manipulator or closed-loop mech-
anisms in general. However, the computational speed issae iat this point, which
can be improved in the future using symbolic simplifications
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