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Abstract

Trajectory-tracking control of parallel manipulators is more difficult than in
the case of serial ones due to the presence of the loop-closure constraints and
constraint forces resulting from them. One needs to eliminate these forces to get
to the equation of motion, and then apply a control scheme.

In this paper, such a control scheme is presented through application ona
semi-regular Stewart platform manipulator (SRSPM). The manipulator has six
degrees-of-freedom; however, it is modelled by a system of 18 coupled nonlinear
ordinary differential equations (ODE) using the constrained Lagrangian formula-
tion. The model is then linearised through feedback, and controlled by a linear
PD servo scheme. Numerical simulations over a non-singular path showthat the
scheme is fairly accurate, at the cost of being computationally expensive. The
scheme is general in nature, and as such, it is expected to work in the case of other
parallel manipulators as well.

Keywords: Stewart platform, Computed torque control, Feedback linearisation,
Control-law partitioning, Parallel manipulator, Lagrangian dynamics, Trajectory-
tracking

1 Introduction

The task of trajectory-tracking in parallel manipulators is generally more complicated
in parallel manipulators than in their serial counterparts. One reason for this is the
geometric complexity of their singularity manifold, whichmakes it difficult to find
a non-singular path connecting two arbitrary configurations in the workspace. Even
when such a path is obtained, accurate tracking requires theunderstanding of the dy-
namic model of the manipulator, which in turn involves actuated, as well as passive
links. In order to complete the dynamic model, one needs to find the motion of the pas-
sive links in addition to the actuated ones. While this can be done in principle using
the forward kinematic analysis, in manipulators such as theStewart platform (SPM),
forward kinematics is a hard problem to solve.

However, very structure of a parallel manipulator providesan easier alternative
to the above method. Since each leg of a parallel manipulatorconnects the moving
platform to the fixed base in an independent manner, the inverse kinematic problem is
naturallydecoupled. If the end-effector’s (i.e., the moving platform’s) pose is known
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at an instant of time, then the active as well as the passive link positions can be found
out easily from inverse kinematics (see, e.g., [1]). This allows for the formulation of
the equation of motion of the manipulator as aconstrained Lagrangian system, subject
to the loop-closureconstraints. Though the model is in higher dimensions than the
degree-of-freedom (DoF) (due to the presence of passive links), it affords a dynamic
model that can be included in the trajectory-tracking scheme.

Such a scheme is adopted in this paper to apply a trajectory-tracking control to
an SRSPM. Acomputed torque schemeis adopted in which inertia, Coriolis forces
are representedexactly. This is in contrast with a related work [2], where an approx-
imation to such terms have been used. In [3], an optimal control scheme has been
developed in thetask space, where the forward kinematics is approximated by poly-
nomials using a predicted square error cost function. In [4], authors have discussed
an extended torque control scheme where sensors are introduced in passive joints and
the redundant information is used to simplify the model-based scheme. However, that
would arise in a physical implementation of the scheme have not been discussed as
the model is verified only by a simulation. In the present work, the trajectory cho-
sen is verified to be non-singular following the method described in been described
in [5]. Numerical simulations performed show that the trajectory can be tracked to
an accuracy of10−5m. However, it requires high temporal resolution, and hence it is
computationally expensive.

The rest of the paper is organised as follows: Section 2 describes the development
of the kinematic model of the SRSPM. In Section 3, the dynamicmodel is presented,
which forms the back-bone of the model-based control schemepresented in Section 4.
The simulation results are discussed in Section 5, followedby the conclusions in Sec-
tion 6.

2 Kinematic Model of the SRSPM

The geometry of the SRSPM manipulator studied in this paper (shown in Fig. (1a)) is
identical to the one presented in [6].

2.1 Geometry and loop-closure

The top and the bottom platforms are semi-regular hexagons contained within cir-
cles of radii2rb and2rt respectively, with the angular separation between the leg-
connection points as2γb and2γt respectively. The legs are UPS in structure, with the
P-joint actuated in each case. The geometry of a single leg isshown in Fig. (2). Theith
leg vector is found asli = (0, 0, li)

T in its local frame. Two successive rotations, given
by Ry(φi)Rx(ψi) account for the U-joint at the base of each leg. Thus, theconfigu-
ration spaceof the manipulator is given byq = (lT ,φT )T , wherel = (l1, . . . , l6)

T

andφ = (φ1, . . . , φ6, ψ1, . . . , ψ6)
T . The loop-closure constraints in global frame are:

pi = bi + li

⇒p+Rai − bi −Ry(φi)Rx(ψi)(0, 0, 1)
T = 0, i = 1, . . . , 6 (1)
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(a) Geometry of the SRSPM
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(b) Geometry of the top platform

Figure 1: Schematic of the SRSPM (adopted from [6])

(a) Theith leg in the global frame (b) Geometric details of a
single leg

Figure 2: Geometry of a leg of the SRSPM

wherep = (x, y, z)T andR ∈ SO(3) denote the position of the centre of the top
platform, and the orientation of the top platform with respect to the fixed base, respec-
tively. The top and bottom ends of theith leg are given byai andbi respectively.
Further,R is parametrised in terms of theRodrigue’s parameters, c = (c1, c2, c3)

T .
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2.2 Velocity kinematics

From Eq. (1), one finds:

pi = bi +Ry(φi)Rx(ψi)(0, 0, 1)
T and (2)

p = 1/6

6
∑

i=1

pi (3)

Velocity of the centre of the top platform is found by time differentiation:

ṗ = Jpqq̇, Jpq =
∂p

∂q
(4)

Similarly, mass-centres of the top and the bottom parts of the ith leg are respectively
given by (see Fig.(2)):

pai = bi +Ry(φi)Rx(ψi)lai, lai = (0, 0, lai)
T (5)

pbi = bi +Ry(φi)Rx(ψi)lbi, lbi = (0, 0, li − lai)
T (6)

Velocities of these points are obtained in terms of the corresponding Jacobian matrices:

ṗai = Jpaqiq̇, Jpaqi =
∂pai

∂q
andṗbi = Jpbqiq̇, Jpbqi =

∂pbi

∂q
(7)

Finding the angular velocities of the legs are simpler, as both parts of the prismatic
joint have the same angular velocity. The rotation matrix ofeach leg is given byRli =
Ry(φi)Rx(ψi), and the correspondingbody-fixed angular velocity matrix,Ωi ∈ so(3)
is given by:

Ωi = RT
liṘli (8)

Extracting the angular velocity vector from the3× 3 skew-symmetric matrix:

ωli = Jωlqiq̇ (9)

Similarly, one obtains the angular velocity of the top platform from the knowledge of
its orientation given byR:

ω = Jωqq̇ (10)

Computations of these Jacobian matrices typically requirethe use of a Computer Al-
gebra System (CAS) as computing so many partial derivativesby hand is tedious as
well as error-prone. In this work, a commercial CASMathematica [7] has been
used for all symbolic computations.

3 Dynamic Model of the Manipulator

Theconstrained Lagrangian formulationis used to develop a model of the manipula-
tor’s dynamics.
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3.1 Forward dynamics

The Lagrangian of the manipulator,L(q, q̇) = T − V , is computed in terms of the
kinetic energyT , and the potential energyV . The kinetic energy is a sum of the
kinetic energies of the individual legs, as well as that of the top platform:

T =
1

2
q̇T (I l + Ip)q̇, where,Ip = JT

pqmpJpq + JT
ωqIpJωq (11)

I l =

6
∑

i=1

(

JT
pbqimbiJpbqi + JT

ωlqi(I lai + I lbi)Jωlqi + JT
paqimaiJpaqi

)

(12)

wherembi,mai,mp are the masses of lower and upper parts of theith leg, and
the platform, respectively. Further,I lbi, I lai, Ip are the inertia matrices of lower
and upper parts of theith legs, and the top platform in the respective body-fixed
frames, respectively. For calculating the potential energy V , the base platform height
is taken as the datum. The total potential energy is calculated as the sum of the po-
tential energies of each of the moving parts:V =

∑6

i=1(Vbi + Vai) + Vp, where,
Vbi, Vai, Vp (i = 1, . . . , 6) are the potential kinetic energies of the lower and upper
links of the legs, and the platform, respectively.

The equations of motion for the constrained system with theloop-closurecon-
straintsη(q) = 0 are derived as (see, e.g., [1]):

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= Fi + (Jηqλ)i, Jηq =

∂η

∂q
, i = 1, . . . , 12 (13)

whereJηq is the constraint Jacobian,Fis are the externally applied leg forces, andλ

is the vector ofLagrange multipliers. In a matrix form, Eq. (13) can be written as

M(q, q̇)q̈ +C(q, q̇)q̇ +G(q) = F + JT
ηqλ (14)

Here,M(q, q̇) = I l + Ip is the18 × 18 mass matrix;C(q, q̇) is the centripetal and
Coriolis force matrix, which can be derived fromM (see, e.g., [1]);G(q) = ∂V

∂q
is the

vector of gravitational loads;F is the vector of external forces; andJT
ηqλ is the vector

of constraint forces. The Lagrange multipliersλ can be obtained as (see, e.g., [1]):

λ = −A−1
(

J̇ηqq̇ + JηqM
−1f

)

, A = JηqM
−1JT

ηq, f = F −Cq̇ −G (15)

Using Eq. (15) in Eq. (14), theforward dynamic equationis obtained as:

Mq̈ = f − JT
ηqA

−1
(

J̇ηqq̇ + JηqM
−1f

)

(16)

3.2 Inverse dynamics

The inverse dynamic equation, i.e., the expression for the externally applied force for
a certain motion of the manipulator is obtained by some manipulation of Eq. (16):

Mq̈ =
(

I − JT
ηqA

−1JηqM
−1

)

f − JT
ηqA

−1J̇ηqq̇

⇒f = B#
(

Mq̈ + JT
ηqA

−1J̇ηqq̇
)

, B =
(

I − JT
ηqA

−1JηqM
−1

)

⇒F = B#
(

Mq̈ + JT
ηqA

−1J̇ηqq̇
)

+Cq̇ +G (17)
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whereI ∈ R
18×18 is an identity matrix, and(·)# denotes thepseudo-inverseof a

matrix. It is observed, that atnon-singularpoints in the trajectory, the matrixB ∈

R
18×18 has rank 6. This corroborates with the fact that in Eq. (17), only 6 of the

entries inBF are allowed to befree, as the mechanism has only those many degrees-
of-freedom1. Thus,pseudo-inverseneeds to be used in Eq. (17) rather than inverse.

4 Trajectory-tracking Control

The trajectory is chosen as cubic functions in the coordinates(x, y, z) of the pointp,
and the Rodrigue’s parameters(c1, c2, c3) describing the orientation of the top plat-
form. It is verifieda priori that the chosen path is free of singularities following [5].

A linear (PD) control scheme is adopted for the tracking taskafter feedback-
linearisationof the manipulator’s dynamics (see, e.g., [1]). The following assump-
tions are inherent in such schemes: (a) the model is deterministic with no parametric
uncertainties, (b) there are no unmodelled dynamics, e.g.,friction, and (c) full state
feedback is available without delay and noise. The requiredcontrol effortF is got
from Eq. (17):

BF = Mq̈ + JT
ηqA

−1J̇ηqq̇ +B(Cq̇ +G) (18)

Assume thatF partitions such that:BF = αF ′ + β, and choose:

α = M , β = JT
ηqA

−1J̇ηqq̇ +B(Cq̇ +G) (19)

This reduces the manipulator’s dynamics to alinear, decoupled, unit inertia system:

F ′ = q̈ (20)

A PD control scheme is proposed for the linear system:

F ′ = q̈d(t) +Kvė(t) +Kpe(t), e(t) = qd(t)− q(t) (21)

whereqd(t) denotes thatdesiredtrajectory, andKv andKp denote the velocity and
position gain matrices, respectively. Application of the control input in the unit inertia
system results in a second order linear ODE in the errore(t):

ë(t) +Kvė(t) +Kpe(t) = 0 (22)

The gains are chosen so that the errors die out in acritically dampedmanner:

Kp = kpI, Kv = 2
√

kpI, kp > 0 (23)

1To study this further, it has been tested, separately, that at a singularity whererank (Jηq) goes down
by one,rank (B) goes up by the same number.
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5 Simulation Results and Discussions

The mass and inertia properties for the following simulations were adopted from [8].
The initial pose is chosen as(xi, yi, zi) = (0.3520, 0.7040, 1.7040), (c1i, c2i, c3i) =
(0.2056, 0.3408, 0.5760), while the final pose is given by(xf , yf , zf ) = (0.3520,
0.7040, 1.7040), (c1f , c2f , c3f ) = (0.4, 0.6, 0.9) (see Fig. (3)). Two different simula-

−0.5
0

0.5
1

1.5
2

0.5

1

1.5

2

2.5

3
1

2

3

4

xy

z

t=t
f

t=0

t=0.5xt
f

x

y

y

z

z

z

x

y

x

Figure 3: Trajectory of the end-effector frame

tions have been performed: forfastmotion where the path is covered intf = 1 second,
slowmotion where the path is covered intf = 2 seconds. The value ofkp is chosen
by numerical trials, and fixed at2000.

Fig. (4) shows sample results from the simulations conducted at different speeds
of the top platform. As expected, the tracking errors as wellas the actuator efforts are
higher for the fast motion than the slow. The plots show that the errors are brought
down faster when in slow motion than the fast. This is due to the fact that sampled
values of the non-linear portions of the controller (insidethe numerical ODE integra-
tor) is closer to the real values in slow motion (assuming similar time steps in both the
simulations).

The CPU time consumed is approximately 10 minutes for the fast motion case
and 20 minutes for the slow. There are two reasons for this: (a) the expressions forM
andC are huge in size (i.e., 5.8 MB and 463 MB ofMathematica expressions,
respectively); and (b) very tight error tolerances were setup for the ODE solver, so as
to obtain very accurate results (i.e., tracking error of theorder of10−5m, compared
to errors of10% in [2] and0.68% in [3]), purely for the sake of demonstration. The
computational speed can be enhanced by performing symbolicsimplifications on the
matricesM , C and by increasing the numerical tolerances to realistic levels.

6 Conclusions

A study on the trajectory-tracking control of SRSPM has beenpresented. It has been
shown that the feedback linearisation scheme with a simple PD servo part works ef-
fectively, yielding tracking errors in the range of10−5m. It has been observed that the
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Figure 4: Results of simulation for fast and slow motions
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formulation involves the inversion of a18 × 18 matrix with rank 6. However, using
the pseudo-inverse allows the computation to proceed in a stable manner.

The control scheme is applicable toanyparallel manipulator or closed-loop mech-
anisms in general. However, the computational speed is an issue at this point, which
can be improved in the future using symbolic simplifications.
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