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Abstract

The present paper deals with the coordination issues of multiple wheeled
robots working in a common dynamic environment, in a decentralized manner.
Two different motion planners, one based on Neural Network and other using
the potential field method have been developed to plan the motion of the robots.
A strategic approach has been proposed to develop the decision making support.
Performance of the developed approaches have been tested throughcomputer sim-
ulations. Proposed strategy has been found to solve the conflicts and induced co-
ordination among the agents.

Keywords: Mobile Robots, Coordination, Robot Motion Planning, Neural Net-
work, Potential Field Method.

1 Introduction

Multiple mobile robots working in a common work-space will have to negotiate their
motion. Main aim here is to find collision-free paths of all the robots while they are
moving from their respective starting points to the destinations. The path for each robot
is constrained by its current position, the goal point and the movements of the other
robots. Therefore, it is a complicated task and there must bean intelligent and adaptive
motion planner to solve the same. Motion planner can be designed in two ways. Firstly
through centralized manner, in which there will be a master robot who will dictate the
motion plan to other robots and other robots obey the master.However, it suffers from
several drawbacks. Therefore, most of the researchers are preferring the other option,
which is known as decentralized motion planning. In case of decentralized system,
each robot carries out tasks cooperatively. This sort of system offers more freedom
to the robots and allows each robot to take the decision independently/selfishly. How-
ever, to build a full-proof decentralized system, it shouldhave the following design
characteristics:Coordination, Communication, andCooperation [1]. A decentral-
ized system has been applied in many places, such as, sharingof files, transportation
of goods, maintaining the signaling system of airplanes, medical diagnosis, Industry
automation, etc.

Quite a few researchers [2] have considered soccer playing could be one exam-
ple of decentralized motion planning of multiple agents. They have set some long
term goal. Most of the researchers are presently trying to fulfill the long term goal
set by Alan Macworth [3]. Several algorithms / techniques are available in the litera-
ture. Out of which, mixed integer non-linear programming method [4], reinforcement
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learning [5], probabilistic road map [6], potential field method [7], cell-to-cell map-
ping [8] are important to mention. Soft computing-based motion planning schemes
have also been proposed by some researchers. Both fuzzy logic [9] as well as neural
network [10] have also been proposed by the investigators for solving the similar kind
of problems. However, all such methods (both algorithmic and soft computing-based)
have some common drawbacks, such as: (a) competition among the robot is not con-
sidered, (b) role of a agent is kept fixed, thus the robustnessand adaptability of a agent
is very low and (c) a particular agent is allowed to navigate in a fixed zone.

Therefore, the coordination among the agents is still a challenging research issue
in robotics. In the present study an attempt was made to solvethe motion planning
problem of multiple mobile robots moving in a common dynamicenvironment. The
rest of the paper is structured as follows: In Section 2, coordination of multiple mobile
robots have been studied. Developed navigation schemes andthe preferred coordi-
nation strategy are discussed in Section 3. Results are presented and discussed in
Section 4. Finally, some concluding remarks are made and thescopes for future work
are indicated in Section 5.

2 Coordination of Multiple Mobile Robots

In a 2-D space, multiple robots are moving starting from an initial position with dif-
ferent speed and in different direction. Starting and final positions of all the robots
are defined a-priori and those of one robot are different fromthe other. The total path
(starting from a pre-defined position to a fixed goal) of any robot is assumed to be a
collection of some small segments (either a straight one or acombination of straight
and curved paths), each of which is traversed during a fixed time ∆T . If a robot
finds any other robot to be critical robot (which may collide with the planning robot
if it moves along the previous direction and by maintaing thesame speed), the motion
planner is activated. Otherwise, the robot moves toward thegoal in a straight path with
a maximum possible velocity. The task of the motion planner is to determine theac-
celeration(a) anddeviation(θ1) of the robot based on thedistanceandangleinputs, to
avoid collision with it. Since distance is one of the major factor based on which critical
robot is identified. Thus, there is a chance that a robot critical to the planning robot
may also consider the planning robot to be critical during its own motion planning. As
a result of which, both will get deviated from their previousdirection of motion and
their speed will also be hampered. It will then increase the traveling time to be taken
to reach the goal by the robots. In order to avoid the same a strategic decision tool is
adopted to predict which robot will cooperate with the otherin a particular time step.
This process of motion planning will continue, until all therobot reaches their individ-
ual destination and total traveling time for each robot (T) is then calculated by adding
all intermediate time steps taken by the robot to reach it. Itis important to mention that
the last time step (Trem) may not be a complete one and it depends on the distance left
uncovered (dgoal) by the robot. If it (i.e., the goal distancedgoal) comes out to be less
than or equal to a predefined minimum distance (dmin), it starts decelerating and stops
at the goal. Again, sometimes the robot’s motion as providedby the motion planner
may violate its kinematic and/or dynamic constraints. In such a situation, the robot is
stopped at the present position itself. Our aim is to design asuitable adaptive and coop-
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erative motion planner, so that all the robots will be able toreach their destination with
the lowest possible traveling time by avoiding collision among themselves. Therefore,
the present problem can be treated as a constrained traveling time (T ) optimization
problem as indicated below.

Minimize T =
n∑

i

(U i ×∆T + T i
rem), (1)

whereU i indicates the number of complete time steps for roboti andn denotes the
total number of robots present in the environment.
subject to: (a) the path is collision-free, and (b) both the kinematic and dynamic con-
straints of the robots are satisfied.

3 Developed Navigation Schemes & Coordination Strat-
egy

Several methods had been tried by various investigators to solve similar kind of prob-
lems. The authors have developed two motion planning approaches along with a novel
coordination strategy. Neural network has the capability of solving different complex
real-world problems and it may also provide a feasible solution to the present prob-
lem. Therefore, an attempt has been made to develop an NN-based motion planner
in Approach 1. On the other hand, potential field-based motion planner is the widely
used traditional motion planner. Thus, performance of Approach 1 is compared with
a potential field-based motion planner, i.e., Approach 2. Both these approaches have
been discussed in subsequent sections, respectively.

3.1 Approach 1: neural network-based motion planner

Figure 1 shows the architectural graph of a three-layered feed forward neural network
with a single hidden layer. In the first layer, two neurons representing the two inputs
of the controller, such asdistanceof the robot from its most critical obstacle and their
includedanglewith reference to the goal are considered, in the present work. There
are two neurons at the output layer expressing two differentoutputs of the controller,
namelydeviationandaccelerationof the robot required to avoid collisions with the
moving obstacles and to reach the destination in minimum traveling time. The number
of hidden layer neurons are varied in a reasonable range to get the best result from the
controller. For ease of use, we have assumed a fixed bias to each neuron of the ar-
chitecture and a tangent hyperbolic function is utilized inthe present study. Realizing
the fact that it is difficult to develop a neural controller through explicit design, re-
searchers working in this field started thinking whether it can be evolved by using an
evolutionary technique. Simultaneous optimization of weights and the architecture of
a neural network is addressed in this section. To select proper magnitudes of the con-
stant of activation functions and to optimize the weights ofthe network, we need to
deal with a few continuous variables, whereas tuning of the architecture involves the
problem dealing with discrete variables. Thus, the presentproblem can be treated as
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Figure 1: A schematic diagram of the neural network structure.

a mixed-integer optimization problem, involving both the integer as well as real vari-
ables. A binary-coded GA with 850-bits long string is used for this purpose. The first
30 bits will carry information of three continuous variables (10 bits for each variable),
representing the constants of hyperbolic functions at three different layers. Out of
the remaining 820 bits, every 41 bits (starting from31st bit location of 850-bits long
string) are used to indicate the existence of a hidden neuron(1 for presence and 0 for
absence) and its corresponding four synaptic weights, (10 bits for each weight). There-
fore, a GA string will look as follows (in which 41-bits have been shown to indicate
the presence ofjth neuron and its connecting weights, such asv1j , v2j , wj1, wj2):

1 · · · 1
︸ ︷︷ ︸

C1

0 · · · 1
︸ ︷︷ ︸

C2

1 · · · 0
︸ ︷︷ ︸

C3

. . . . . . 1
︸︷︷︸

jth hidden neuron

1 · · · 1
︸ ︷︷ ︸

v1j

0 · · · 1
︸ ︷︷ ︸

v2j

1 · · · 0
︸ ︷︷ ︸

wj1

0 · · · 0
︸ ︷︷ ︸

wj2

. . . . . .

︸ ︷︷ ︸

Architecture of NN

It is important to mention that we have restricted our searchup to a maximum of twenty
neurons lying in the hidden layer. During optimization, theconstants of activation
function for three layers are varied in a range of (0.1 to 15.0) and the weights are
allowed to vary from 0.0 to 1.0. The ranges of variation of different variables are
selected after a careful study.

The GA begins its search by randomly creating a number of solutions (equals to
the population size) represented by the binary strings and each string indicates a typi-
cal neural network-based controller. A particular NN-controller differs from other, in
terms of the number of hidden neurons, connecting weights and constants of activation
function at different layers. Each solution in the population is then evaluated, to assign
a fitness value. After the fitness is assigned to each solutionin the population, they are
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modified by using three operators – reproduction, uniform crossover and bit-wise mu-
tation. One iteration involving these three operators followed by the fitness evaluation,
is called a generation. Generations proceed until a termination criterion is satisfied. In
this approach, the GA is allowed to run for a pre-specified number of generations. The
fitness of a GA-string (say, n) is evaluated using the expression mentioned below.

Fitness =
1

M

M∑

m=1

1

Sm

Sm∑

s=1

2∑

k=1

|Tms
3k −Oms

3k (n)| , (2)

It is important to mention that the absolute value of error istaken for the fitness de-
termination. Moreover, if the output of the controller in the predicted distance step
is such, that the robot may collide with the most critical obstacle during its move-
ment from the present position to the predicted position, a fixed penalty equal to 200
(selected at random) is added to the fitness. Again, sometimes the robot’s motion as
suggested by NN-based controller, is not possible to implement due to its kinematic
and/or dynamic constraints. In such a situation, the robot is stopped for that particular
time step and a fixed penalty equal to 2000 (selected at random) is added to the fitness,
to avoid such incidences. As there are two inputs of the NN-architecture and there is
some coupling effect among them, topology of the NN having less than three hidden
neurons may affect the generalizing capability of it. To avoid such a situation, another
fixed penalty (equal to 2000, which is selected at random) is added to the fitness of the
GA.

3.2 Approach 2: potential field method as proposed in [11]

According to this approach, any robot moves due to the combined action of attrac-
tive potential generated by its goal and repulsive potential created by opponent robots
moving in the same environment. Different potential functions have been proposed in
the literature. The most commonly used attractive potential takes the form.

Uatt(q) =
1

2
ξρ2(q, qgoal) (3)

whereξ is a positive scaling factor,ρ(q, qgoal) is the distance between the robotq and
the goalqgoal.

There are several drawbacks associated with the traditional PFM. Mostly it is
due to the potential function. Therefore, Ge and Cui have proposed a new repulsive
potential function [11] as mentioned below.

Urep(q) =

{
Urep, ifρ(q, qobs) ≤ ρ0
0 ifρ(q, qobs) > ρ0

(4)

whereUrep = 1
2η

(
1

ρ(q,qobs)
− 1

ρ0

)2

ρ2(q, qgoal) and all other terms have been defined

earlier. Also,η is a positive scaling factor,ρ(q, qobs) denotes the minimal distance
from the robotq to the obstacle,qobs denotes the point on the obstacle andρ0 is a
positive constant denoting the distance of influence of the obstacle.

The robot is then allowed to move due to the combined action ofattractive and
repulsive forces derived by differentiating the corresponding potentials. Total force
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is computed by summing the above two force vectors. In the present study,acceler-
ation of the robot is made proportional to the resultant force and future direction of
movement is made along the direction of the resultant forces.

3.3 Proposed coordination strategy

In the present study, two different strategies have been used to resolve the conflicting
situations, i.e., when two robots in a time step mutually treat each other to be critical.
Strategy 1: Both the robot will adopt zero coordination strategy, i.e.,they will move
along the direction and with acceleration as planned by the motion planner.
Strategy 2: Here one robot will adopt the zero coordination and the otherone will
adopt partial coordination, i.e., it will move with the acceleration as suggested by the
motion planner and will altercate its future direction of movement using the collision
avoidance scheme as suggested by Hui et al. [12]. The robot whose planned deviation
is less will be allowed to follow zero coordination and the other will follow the partial
coordination.

4 Results and Discussions

The performances of the developed approaches have been compared among them-
selves for solving navigation problems of multiple robots.Eight robots are moving in
a grid of 19.95 × 19.95m2 in a 2-D space. Each of these robots will start from its
starting point and reaches its destination without colliding each other. The minimum
distance between the planning robot and its most critical neighbor (dmin) is kept fixed
to 3.2m, to avoid collision between them. The time interval (∆T ) is taken to be equal
to sixteen seconds and robot is assumed to have a maximum and minimum accelera-
tion of 0.05m/s2 and 0.005m/s2, respectively. In the developed soft computing-based
approach, the NN is trained off-line, with the help of a GA, asexplained earlier. For
tuning of the NN, a set of 200 training data is created at random, in which initial po-
sition, final position and direction of movement of the robots have been varied. With
all such randomly-generated training data, the robots start moving towards their goal.
It is to be noted that a batch mode of training has been adoptedin the present study.
As the performance of a GA depends on its parameter setting, experiments are carried
out with different sets of parameters to find the most suitable set. In these experi-
ments, only one parameter is varied at a time, keeping the other parameters fixed and
the fitness values are recorded. The best results are obtained with the following GA-
parameters: Uniform Crossover probability (pc) = 0.5, mutation probability (pm) =
0.003, population size (popsize) = 120, maximum number of generation (Maxgen) =
170.

After the tuning of the NN is over, their performances have been compared among
the Approaches 1 and 2, in terms of traveling time and their CPU times, for a set of five
randomly-generated test scenarios. The traveling time taken by the robot by following
both the approaches, while moving among eight robots is shown in Table 1 using
Strategy II. The results of both the approaches are found to be similar. However, time
taken by the robots using Approach 1 is found to be less in mostof the cases. It may
be due to the absence of any in-built optimization module in potential field method.
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For a particular scenario (say third of Table 1) involving eight cooperating robots, the
paths planned by all the robots are shown in Figure 2 as obtained using Strategy-II.

Table 1: Traveling time taken by different robots (seconds).

Robot Scenario 1 Scenario 2 Scenario 3 Scenario 4
No. App. 1 App. 2 App. 1 App. 2 App. 1 App. 2 App. 1 App. 2
1 75.69 75.69 29.91 48.56 60.44 67.57 79.45 79.45
2 30.34 30.34 51.96 51.96 35.77 35.77 33.19 33.19
3 59.33 64.63 52.92 52.92 47.42 47.42 88.81 88.81
4 57.69 57.69 49.03 64.49 45.43 45.43 26.52 29.37
5 64.11 64.11 91.63 97.8 60.16 60.16 77.25 74.13
6 70.59 63.3 111.38 111.38 58.72 76.62 81.25 97.61
7 84.8 99.61 91.18 104.25 70.21 71.54 127.64 141.32
8 24.23 24.23 56.76 56.76 81.53 79.4 62.69 76.19

During simulations, Approach 1 is found to outperform the other and Strategy-II has
solved the conflict in a more better way than Strategy-I. Therefore, NN-based motion
planner along with the proposed strategy might be useful in designing autonomous and
intelligent multi-agent system. To understand the feasibility in implementations of the
developed approaches on real experiments, CPU times have been compared. This test
was carried out in a P-IV PC. The code is written with the help of a C-programming
language and compiled in Linux environment (Fedora 10). CPUtimes of the developed
computer program was tested through time command. CPU timesof the Approaches 1
and 2 are found to be equal to0.026 and0.011 seconds, respectively. This clearly
indicates that both the approaches are suitable for real experiments.

5 Concluding Remarks

Motion planning problem of multiple robots is solved, in thepresent work. Two differ-
ent approaches have been developed for this purpose. In Approach 1, a GA-tuned NN
has been considered. On the other hand, a modified potential field method as proposed
by Ge and Cui [11] has been used. The effectiveness of both theapproaches are tested
through computer simulations for five different scenarios (randomly generated and are
different from the training scenarios). Approach 1 is foundto outperform for most of
the scenarios in compared to the other. CPU times of both the approaches are found to
be low, thus making them suitable for on-line implementations. Therefore, both NN as
well as PFM-based motion planner might be useful in designing a controller for each
agent of a multi-agent system.

All the robots here are assumed to have the same velocity profile. But, in prac-
tice, they may have different velocity profiles. The velocities of the robots can be
determined using soft computing techniques also. Moreover, adaptability, robustness,
cooperativeness and communicativeness of the developed motion planners might be
tested through some mathematical formulations. Presentlythe author is working with
these issues.
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Figure 2: Movements of eight different robots in 2D space.
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