15™ National Conference on Machines and Mechanisms NaCoMM2011-29

Neural Network-Based Coordinated Motion Planning
of Multiple Mobile Robots
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Abstract

The present paper deals with the coordination issues of multiple wheeled
robots working in a common dynamic environment, in a decentralized enann
Two different motion planners, one based on Neural Network and atsieg
the potential field method have been developed to plan the motion of the robots
A strategic approach has been proposed to develop the decision maRimyts
Performance of the developed approaches have been tested thomgater sim-
ulations. Proposed strategy has been found to solve the conflicts areihdor
ordination among the agents.

Keywords: Mobile Robots, Coordination, Robot Motion Planning, Neural Net-
work, Potential Field Method.

1 Introduction

Multiple mobile robots working in a common work-space witive to negotiate their
motion. Main aim here is to find collision-free paths of aktiobots while they are
moving from their respective starting points to the desiims. The path for each robot
is constrained by its current position, the goal point arertftovements of the other
robots. Therefore, it is a complicated task and there muahhietelligent and adaptive
motion planner to solve the same. Motion planner can be dedig two ways. Firstly
through centralized manner, in which there will be a masibot who will dictate the
motion plan to other robots and other robots obey the madtevever, it suffers from
several drawbacks. Therefore, most of the researchersefieriing the other option,
which is known as decentralized motion planning. In caseeafedtralized system,
each robot carries out tasks cooperatively. This sort dlegyffers more freedom
to the robots and allows each robot to take the decision eggntly/selfishly. How-
ever, to build a full-proof decentralized system, it shobéve the following design
characteristicsCoordination, Communication, andCooperation[1]. A decentral-
ized system has been applied in many places, such as, sloafites, transportation
of goods, maintaining the signaling system of airplanegjioa diagnosis, Industry
automation, etc.

Quite a few researchers [2] have considered soccer playialyl be one exam-
ple of decentralized motion planning of multiple agents.ey'ihave set some long
term goal. Most of the researchers are presently trying ifdl fine long term goal
set by Alan Macworth [3]. Several algorithms / techniquesarailable in the litera-
ture. Out of which, mixed integer non-linear programmingmoe [4], reinforcement
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learning [5], probabilistic road map [6], potential field thed [7], cell-to-cell map-

ping [8] are important to mention. Soft computing-basediomoplanning schemes
have also been proposed by some researchers. Both fuzzy[®gis well as neural
network [10] have also been proposed by the investigatorsdieing the similar kind

of problems. However, all such methods (both algorithmid soft computing-based)
have some common drawbacks, such as: (a) competition arhengliot is not con-

sidered, (b) role of a agent is kept fixed, thus the robustaedsdaptability of a agent
is very low and (c) a particular agent is allowed to navigate fixed zone.

Therefore, the coordination among the agents is still dehging research issue
in robotics. In the present study an attempt was made to sbé/enotion planning
problem of multiple mobile robots moving in a common dynamiwironment. The
rest of the paper is structured as follows: In Section 2, dioation of multiple mobile
robots have been studied. Developed navigation schemetharuteferred coordi-
nation strategy are discussed in Section 3. Results aremszs and discussed in
Section 4. Finally, some concluding remarks are made ansiciyges for future work
are indicated in Section 5.

2 Coordination of Multiple Mobile Robots

In a 2-D space, multiple robots are moving starting from atiailnposition with dif-
ferent speed and in different direction. Starting and fir@ifions of all the robots
are defined a-priori and those of one robot are different fitoenother. The total path
(starting from a pre-defined position to a fixed goal) of anyotds assumed to be a
collection of some small segments (either a straight oneaamabination of straight
and curved paths), each of which is traversed during a fixed AT. If a robot
finds any other robot to be critical robot (which may collidghathe planning robot
if it moves along the previous direction and by maintaingsame speed), the motion
planner is activated. Otherwise, the robot moves towarddadin a straight path with
a maximum possible velocity. The task of the motion plansdoidetermine thac-
celeration(a) anddeviation(6;) of the robot based on tldistanceandangleinputs, to
avoid collision with it. Since distance is one of the majartéa based on which critical
robot is identified. Thus, there is a chance that a robofcatito the planning robot
may also consider the planning robot to be critical durisgivn motion planning. As
a result of which, both will get deviated from their previadisection of motion and
their speed will also be hampered. It will then increase thedling time to be taken
to reach the goal by the robots. In order to avoid the sameategic decision tool is
adopted to predict which robot will cooperate with the otimea particular time step.
This process of motion planning will continue, until all tbot reaches their individ-
ual destination and total traveling time for each robot €Thien calculated by adding
all intermediate time steps taken by the robot to reachii.ithportant to mention that
the last time stepl(....,) may not be a complete one and it depends on the distance left
uncoveredd.q:) by the robot. Ifit (i.e., the goal distaneg,.;) comes out to be less
than or equal to a predefined minimum distantg;(,), it starts decelerating and stops
at the goal. Again, sometimes the robot’s motion as provlgethe motion planner
may violate its kinematic and/or dynamic constraints. lohsa situation, the robot is
stopped at the present position itself. Our aim is to desigritable adaptive and coop-
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erative motion planner, so that all the robots will be ablestch their destination with
the lowest possible traveling time by avoiding collisionarg themselves. Therefore,
the present problem can be treated as a constrained trgutitie (I') optimization
problem as indicated below.

Minimize T =Y (U' x AT + T' ), 1)

whereU' indicates the number of complete time steps for robandrn denotes the
total number of robots present in the environment.

subject to: (a) the path is collision-free, and (b) both theknatic and dynamic con-
straints of the robots are satisfied.

3 Developed Navigation Schemes & Coordination Strat-
egy

Several methods had been tried by various investigatorsive similar kind of prob-
lems. The authors have developed two motion planning appesaalong with a novel
coordination strategy. Neural network has the capabilityabving different complex
real-world problems and it may also provide a feasible smhuto the present prob-
lem. Therefore, an attempt has been made to develop an N&d-magtion planner
in Approach 1. On the other hand, potential field-based mqtianner is the widely
used traditional motion planner. Thus, performance of Apph 1 is compared with
a potential field-based motion planner, i.e., Approach 2thBbese approaches have
been discussed in subsequent sections, respectively.

3.1 Approach 1: neural network-based motion planner

Figure 1 shows the architectural graph of a three-layered ferward neural network
with a single hidden layer. In the first layer, two neurongespnting the two inputs
of the controller, such adistanceof the robot from its most critical obstacle and their
includedanglewith reference to the goal are considered, in the preserit.wiinere
are two neurons at the output layer expressing two diffepatputs of the controller,
namelydeviationand accelerationof the robot required to avoid collisions with the
moving obstacles and to reach the destination in minimuwvelirsg time. The number
of hidden layer neurons are varied in a reasonable rangd thebest result from the
controller. For ease of use, we have assumed a fixed bias toneacon of the ar-
chitecture and a tangent hyperbolic function is utilizethia present study. Realizing
the fact that it is difficult to develop a neural controllerahgh explicit design, re-
searchers working in this field started thinking whetheait be evolved by using an
evolutionary technique. Simultaneous optimization ofgi#s and the architecture of
a neural network is addressed in this section. To selecepmagnitudes of the con-
stant of activation functions and to optimize the weightshaf network, we need to
deal with a few continuous variables, whereas tuning of tiehitecture involves the
problem dealing with discrete variables. Thus, the prepesttlem can be treated as



15™ National Conference on Machines and Mechanisms NaCoMM2011-29

112 5—>03
(Angle) (Acceleration)
Input layer Hidden layer Output layer

Figure 1: A schematic diagram of the neural network structur

a mixed-integer optimization problem, involving both timeiger as well as real vari-
ables. A binary-coded GA with 850-bits long string is usedtfis purpose. The first
30 bits will carry information of three continuous variablg.0 bits for each variable),
representing the constants of hyperbolic functions atethiferent layers. Out of
the remaining 820 bits, every 41 bits (starting frémi® bit location of 850-bits long

string) are used to indicate the existence of a hidden ngdréor presence and O for
absence) and its corresponding four synaptic weights, i@y each weight). There-
fore, a GA string will look as follows (in which 41-bits haveén shown to indicate
the presence oft" neuron and its connecting weights, suchvas va;, w1, w;2):

1---10---11---0 ...... 1 1---10---11---00---0......
—— —— —— ~— —— —— Y ——
Cy Cs Cs 3t hidden neuron V1 V2 wj1 wj2

Architecture of NN

Itis important to mention that we have restricted our seapcto a maximum of twenty
neurons lying in the hidden layer. During optimization, tenstants of activation
function for three layers are varied in a range of (0.1 to 1afd the weights are
allowed to vary from 0.0 to 1.0. The ranges of variation ofatént variables are
selected after a careful study.

The GA begins its search by randomly creating a number otisaolsi (equals to
the population size) represented by the binary strings anH string indicates a typi-
cal neural network-based controller. A particular NN-colier differs from other, in
terms of the number of hidden neurons, connecting weighit€anstants of activation
function at different layers. Each solution in the populatis then evaluated, to assign
a fitness value. After the fitness is assigned to each solitittre population, they are
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modified by using three operators — reproduction, uniforassover and bit-wise mu-
tation. One iteration involving these three operatorfedd by the fitness evaluation,
is called a generation. Generations proceed until a tetioimariterion is satisfied. In
this approach, the GA is allowed to run for a pre-specified Ibemof generations. The
fitness of a GA-string (say, n) is evaluated using the expesaentioned below.

Sm
1

M 2
. 1 ]- ms ms
Fitness = i Z 5 ; |T3° — O35 (n)] (2)

m=1 5=
It is important to mention that the absolute value of erraialeen for the fitness de-
termination. Moreover, if the output of the controller iretbredicted distance step
is such, that the robot may collide with the most critical tabke during its move-
ment from the present position to the predicted positionxedfipenalty equal to 200
(selected at random) is added to the fithess. Again, someftingerobot’s motion as
suggested by NN-based controller, is not possible to imptendue to its kinematic
and/or dynamic constraints. In such a situation, the rabstdpped for that particular
time step and a fixed penalty equal to 2000 (selected at randadded to the fitness,
to avoid such incidences. As there are two inputs of the Nititecture and there is
some coupling effect among them, topology of the NN havisg khan three hidden
neurons may affect the generalizing capability of it. Toidwauch a situation, another
fixed penalty (equal to 2000, which is selected at randomjded to the fitness of the
GA.

3.2 Approach 2: potential field method as proposed in [11]

According to this approach, any robot moves due to the coasbaction of attrac-
tive potential generated by its goal and repulsive poteateated by opponent robots
moving in the same environment. Different potential fuo have been proposed in
the literature. The most commonly used attractive potetaiees the form.

Uatt(Q) = %gpQ((L qgoal) (3)

where is a positive scaling factop(q, g40a1) iS the distance between the rolagoand
the goalggoai.

There are several drawbacks associated with the traditPiRil. Mostly it is
due to the potential function. Therefore, Ge and Cui havegsed a new repulsive
potential function [11] as mentioned below.

Ure pr(q qobs) S £o
Ure = LA ’ 4
»(@) { 0 ifp(q,qobs) > po @
2
whereU,.., = %”(p(q,;obs) — pio) p*(q, qg0a1) @nd all other terms have been defined

earlier. Also,n is a positive scaling factop(q, g.»s) denotes the minimal distance
from the robotq to the obstacleq,,; denotes the point on the obstacle andis a
positive constant denoting the distance of influence of ietazle.

The robot is then allowed to move due to the combined acticsttodictive and
repulsive forces derived by differentiating the corresting potentials. Total force
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is computed by summing the above two force vectors. In thegmtestudyacceler-
ation of the robot is made proportional to the resultant force andré direction of
movement is made along the direction of the resultant forces

3.3 Proposed coordination strategy

In the present study, two different strategies have beet teseesolve the conflicting
situations, i.e., when two robots in a time step mutuallgttesach other to be critical.
Strategy 1: Both the robot will adopt zero coordination strategy, iteey will move
along the direction and with acceleration as planned by thigom planner.

Strategy 2: Here one robot will adopt the zero coordination and the otmer will
adopt partial coordination, i.e., it will move with the atemation as suggested by the
motion planner and will altercate its future direction ofyament using the collision
avoidance scheme as suggested by Hui et al. [12]. The robmtevplanned deviation
is less will be allowed to follow zero coordination and thaeartwill follow the partial
coordination.

4 Results and Discussions

The performances of the developed approaches have beeramangmong them-
selves for solving navigation problems of multiple robdEgght robots are moving in
a grid of 19.95 x 19.95m? in a 2-D space. Each of these robots will start from its
starting point and reaches its destination without cailideach other. The minimum
distance between the planning robot and its most criticight®r (d,,;,,) is kept fixed
to 3.2m, to avoid collision between them. The time intervAll) is taken to be equal
to sixteen seconds and robot is assumed to have a maximumiamdum accelera-
tion of 0.05m/s2 and 0.005m/s2, respectively. In the deedosoft computing-based
approach, the NN is trained off-line, with the help of a GAeaplained earlier. For
tuning of the NN, a set of 200 training data is created at remdo which initial po-
sition, final position and direction of movement of the rabbave been varied. With
all such randomly-generated training data, the robots staving towards their goal.
It is to be noted that a batch mode of training has been adaptié present study.
As the performance of a GA depends on its parameter settipgrienents are carried
out with different sets of parameters to find the most suitaglt. In these experi-
ments, only one parameter is varied at a time, keeping ther pdrameters fixed and
the fitness values are recorded. The best results are othtaitiethe following GA-
parameters: Uniform Crossover probability.X = 0.5, mutation probability §,,,) =
0.003, population sizegopsize) = 120, maximum number of generation{axgen) =
170.

After the tuning of the NN is over, their performances haverbeompared among
the Approaches 1 and 2, in terms of traveling time and theld Gfes, for a set of five
randomly-generated test scenarios. The traveling timentaly the robot by following
both the approaches, while moving among eight robots is showrable 1 using
Strategy Il. The results of both the approaches are foune &irhilar. However, time
taken by the robots using Approach 1 is found to be less in ofaste cases. It may
be due to the absence of any in-built optimization moduledteptial field method.
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For a particular scenario (say third of Table 1) involvingregicooperating robots, the
paths planned by all the robots are shown in Figure 2 as ataising Strategy-II.

Table 1: Traveling time taken by different robots (seconds)

Robot Scenario 1 Scenario 2 Scenario 3 Scenario 4
No. App. 1| App.2| App.1 | App.2 | App.1| App.2 | App.1 | App.2
1 75.69 | 75.69 | 29.91 | 48.56 | 60.44 | 67.57 | 79.45 | 79.45
2 30.34 | 30.34 | 51.96 | 51.96 | 35.77 | 35.77 | 33.19 | 33.19
3 59.33 | 64.63 | 52.92 | 52.92 | 47.42 | 47.42 | 88.81 | 88.81
4 57.69 | 57.69 | 49.03 | 64.49 | 4543 | 4543 | 26.52 | 29.37
5 64.11 | 64.11 91.63 97.8 60.16 | 60.16 77.25 74.13
6 7059 | 63.3 | 111.38| 111.38| 58.72 | 76.62 | 81.25 | 97.61
7 84.8 99.61 | 91.18 | 104.25| 70.21 | 71.54 | 127.64 | 141.32
8 2423 | 24.23 | 56.76 | 56.76 | 81.53 | 79.4 62.69 | 76.19

During simulations, Approach 1 is found to outperform thieestand Strategy-Il has
solved the conflict in a more better way than Strategy-|. &foe, NN-based motion
planner along with the proposed strategy might be usefubsigthing autonomous and
intelligent multi-agent system. To understand the feégibih implementations of the
developed approaches on real experiments, CPU times hawecbenpared. This test
was carried out in a P-IV PC. The code is written with the hdlp €-programming
language and compiled in Linux environment (Fedora 10). GREs of the developed
computer program was tested through time command. CPU tifrthe Approaches 1
and 2 are found to be equal €026 and0.011 seconds, respectively. This clearly
indicates that both the approaches are suitable for rearempnts.

5 Concluding Remarks

Motion planning problem of multiple robots is solved, in firesent work. Two differ-
ent approaches have been developed for this purpose. IroA@pd, a GA-tuned NN
has been considered. On the other hand, a modified poteatthhiethod as proposed
by Ge and Cui [11] has been used. The effectiveness of botipihi@aches are tested
through computer simulations for five different scenariasi§omly generated and are
different from the training scenarios). Approach 1 is fosodutperform for most of
the scenarios in compared to the other. CPU times of bothpgbeaches are found to
be low, thus making them suitable for on-line implementagiol herefore, both NN as
well as PFM-based motion planner might be useful in desgyaigontroller for each
agent of a multi-agent system.

All the robots here are assumed to have the same velocityerdut, in prac-
tice, they may have different velocity profiles. The velmstof the robots can be
determined using soft computing techniques also. Moreagaptability, robustness,
cooperativeness and communicativeness of the developgdmmanners might be
tested through some mathematical formulations. Pres#mlguthor is working with
these issues.
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Figure 2: Movements of eight different robots in 2D space.
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