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Abstract 
 

  In this paper an attempt has been made to design a three legged vertical robot. 
Each leg of the robot is considered to have two links connected each other and with 
the trunk by revolute joint. The legs are symmetrically distributed over the trunk 
body. Movement of the Center of Gravity (CG) of the robot has been ensured 
considering one leg is moving at a time and other two are providing necessary 
support to the robot body. Motion equations of the robot have been derived using the 
concept of Newtonian mechanics. Thereafter, stability of the robot is analysed. 
Computer simulations have been carried out to test the navigation capability of the 
robot on a vertical surface. Performances are found to be satisfactory and 
computational complexity of the developed algorithms is found to be low.   

Keywords: Tripod Robot, Kinematics, Gait Planning, Dynamics, Stability. 

1 Introduction 
Quite a large number of researchers devoted their time in the development of legged 
robots. There are many advantages of using legged robots over the wheeled robots 
and some disadvantages too. The main disadvantage is that a legged robot needs to 
plan both its path as well as gait (the sequence of leg movement) simultaneously 
during locomotion. However, it is extremely difficult job and complexity increases 
as the number of legs increases. As a result, stable gait generation of a hexapod robot 
is more critical than a quadruped robot. On the other hand, hexapod robot is more 
statically as well as dynamically stable than the quadruped or the biped one. It is 
because of the fact that for maintaining stability of a multi-legged robot, its projected 
center of gravity (CG) should lie within its support region, which is a convex hull 
passing through its supporting feet. As the number of legs reduces, number of 
supporting feet reduces and the convex hull becomes smaller. Therefore, it is a fertile 
area of research and many unsolved research problems still exist. Most important job 
to design a legged robot is to solve kinematics, dynamics, gait planning and its 
stability during locomotion. Denavit and Hartenberg [1] had proposed an approach to 
solve the kinematics of different kind of robots. In order to solve the dynamics of the 
robot, some researchers follow Lagrange Euler mechanics [2], and other follow 
Newtonian mechanics [3]. There are other researchers who have worked on the 
development of the robot's motion planning [4]. Stability is another important 
criterion for legged robot. There are two types of stability: static and dynamic [5, 6]. 
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Different aspects of stability of the robot have been explored by various researchers 
[7-8].   

 Going through the literature, it has been observed that the research on the robot 
having odd number of legs is limited. It may be due to the fact that gait planning of 
robots having odd number of legs is extremely difficult. Bretl et al. [4] tried to model 
a three-legged robot climbing natural terrain. On the other hand, it is necessary to 
analyse kinematics and dynamics of any robot before assessing its stability or 
controlling it. In this context, it is important to mention that the three-limbed robot is 
statically stable (since three point-based supports are statically stable). During 
locomotion at least one leg must be in swing phase (i.e., ground reaction forces in 
that leg would be zero) and it results in instability. This problem becomes highly 
complex, if it is planned to move in the uneven surface. 
 Understanding the gap on the development of the three-limbed robot, an attempt 
is made in this work to design a tripod robot that will navigate in plain vertical 
surface. During this study, main focus is made on the following three issues: (a) 
kinematics (forward and inverse) analysis, (b) gait design and trajectory planning, 
and (c) dynamics and stability analysis of the tripod robot. Rest of the paper is 
structured in the following manner. In Section 2, both forward as well as the inverse 
kinematics of the said robot has been discussed and foot trajectory planning of the 
robot has been explained. Formulation of the dynamics model along with the 
stability analysis has been presented in Section 3. Results are presented and 
discussed in Section 4. Finally, some concluding remarks have been made and scope 
for future work has been indicated in Section 5.  

2 Kinematic Model and Trajectory Generations 
In this paper, an attempt has been made to develop a suitable model of a planar three 
legged robot as shown in Fig. 1. A possible kinematic posture of the robot model is 
shown in Fig. 2. The robot consists of three legs and a trunk of triangular cross 
section with each side is equal to ‘a’. Each leg has two links connected each other 
and with the trunk by two rotary joints. It is also important to mention that each joint 
will be controlled separately using differential drive DC servo motors. The Denavit-
Hartenberg (D-H) notations [1] have been followed in kinematic modeling of each 
leg. Table 1 shows four D-H parameters of a leg (say, i), namely link length (aj-1), 
link twist (α j-1), joint offset (dj) and joint angle (θ j) (here ‘j’ denotes a joint 
connecting two successive links) by following the concept described in Craig [9]. It 
is important to mention that for simplicity, link lengths of all the legs are made same. 
Therefore, the first link of a leg, which is connected to the trunk, is denoted by L1 
and second link is represented by L2. From the above relationship, differences 
between the coordinates of the foot tip point (xend

i, yend
i, zend

i)  and CG (xc, yc, zc) of 
i-th leg can be determined for the supplied joint variables (θ2

i and θ3
i) as follows. 

i
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i i
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Figure 1: A planar three-legged robot.

Table 1: D-H parameter table for leg-i. 

Joint No. (j) α j-1 aj-1 dj 
jθ  

CG 0 0 0 
1θ
i  

1 0 / 2 3a 2θ
i0 

 

2 0 L1 0 
3θ

i
 

Tip point 0 L2 -h 0  

    

 
Figure 2: A 2D schematic sketch showing the frames assigned to the first leg of the 

robot. 

 Solving Eq. (1) algebraically, the joint angles θ2
i and θ3

i can be calculated. 
There will be two solutions for each posture of the robot and two values of θ3

i can be 
determined as 

   

 

31 3 3 32 3 3

i
3

2 2

2 2
1 1 1

3
1 2

 atan2 , ,  and  atan2 - ,

where c  can be found out from the following equation

- - -
2 3 2 3

 
2

i i i i i i

i i i i
x y

i

s c s c

a a
p c p s L L

c
L L

  

         
     

2

   (2) 

It is important to note that the value of must lie between -1 and 1 and knowing 

the values of θ
3c i

3
i, two values of θ2

i can be obtained as  
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i i
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a a
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a a
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i i i
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    
    
    
    
    

    i i i
1 32 1 1 2 1 32n θ +θ ,L c + L cos θ +θi i



  (3) 

2.1. Gait Planning Strategy 

During locomotion, a one-step movement is normally followed by human being and 
Bretl et al. [4] have mentioned that one step movement can also be used for planning 
gaits of three-legged robots. In the present work the gaits of the robot have also been 
planned in the similar manner. It has been assumed that during movement at a time 
only one leg will be in swing phase and other two will be in support phase. At first 
say leg-2 and leg-3 are in support phase and leg-1 is in the swing phase moving 
along a specified path. When leg-1 will reach to its goal configuration, leg-1 and leg-
3 will switch to support phase, and leg-2 will be in swinging phase. Thereafter, leg-3 
will be in swing phase and the other two will be in support phase. In this way the tip 
of legs of the tripod reach to the new position with different configurations and 
completes one locomotion cycle.  

Let us say, initial position of the geometric center of the robot is (xc, yc, zc). The 
CG of the robot is moving in a straight line path along ‘Y’ axis with a constant 
speed. The time for a full locomotion cycle is considered to be equal to . After 

 time interval the new position of the CG is (x

t
t c, yc+ y , zc). The above 

movement is achieved in three stages. For each stage, coordinates of the CG of the 
robot, foot tip point of three legs at different instant of time have been presented in 
Table 2. 

Table 2: Positions of different parts of the robot at four instant of time of a 
locomotion cycle. 

Foot tip point 
Time 

( ) tt k  CG 
1st leg 2nd leg 3rd  leg 

k=0 xc ,yc ,zc x1, y1, z1 x2, y2, z2 x3, y3, z3 

k=1/3 xc ,(yc + ), z/ 3y c x1, (y1 + y ),z1 x2, y2, z2 x3, y3, z3 

k=2/3 xc, (yc + ), z2 / 3y c x1, (y1 + y ),z1 x2, (y2 + y ),z2 x3, y3, z3 

k=1 xc, (yc + y ), zc x1, (y1 + y ),z1 x2, (y2 + y ),z2 x3, (y3+ y ), z3 

In this paper, the joint trajectory is interpolated as a linear function with 
parabolic blend at the beginning and end of the trajectory as explained in Craig [9].  
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3 Dynamics of the Robot 
Dynamic equations for both the protraction and retraction phases have been derived 
separately using Newton-Euler based formulation. Torque expressions [10] at the 
Joints 1 and 2 for the i-th leg are given as follows.  
Retraction Phase:  

 
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 
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Protraction Phase: 
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Here, denote mass of links 1 and 2 of i-th leg and body mass of the 

robot, respectively. Acceleration due to gravity is represented by ; speed of the CG 

of the robot is denoted by 

i
1 2, ,i

bm m m
g

cy at i-th leg and ga = [0 (g+ay) 0]T, where ay is the 

acceleration of the CG along y-direction. It is important to mention that all the joint 
torque expressions have been derived with respect to the coordinated frame attached 
to the CG of the robot.  
 
Value for reaction forces are obtained as follows, 
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2g2 2g2X 2g2YF = F F
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where, ,11τ 12τ , , , ,21τ 22τ 31τ 32τ  are net torques at different joint on leg-1, leg-2, 

and leg-3, respectively. 
It is important to mention that determination of ground reaction forces is an 

iterative process and it depends on the requirement of torque at the joints during 
movement of the robot. In this paper, calculated torque in the present step has been 
used to obtain the reaction forces in the future step, which are finally fed to 
determine the torques at joints in that step. Although the similar analytical equations 
are used to determine the future & present step torques at joints, however, difference 
occurs as the position, velocity and accelerations of joints change with time. 
 Stability is an important criterion for the mobile robot. Depending upon the 
number of legs and the nature of the terrain the stability would be either static or 
dynamic. In order to describe the dynamic stability, some terminologies are used. 
Out of which, Zero Moment Point (ZMP), Fictitious Zero Moment Point (FZMP), 
Foot Rotation Indicator (FRI), Center of Pressure (COP), GPCOG [6-8] are 
important ones. In this work, an attempt has been made to asses the stability based on 
ZMP concept. ZMP is defined as that point on the ground at which the net moment 
of the inertia force and the gravity force has no component along the horizontal axes 
[7]. ZMP expressions are formulated as follows.   
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 (9) 

Following important expressions were used to determine the ZMP values.  
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4 Simulation Results 
Developed mathematical models have been tested through computer simulations. It 
has been carried out in a P-IV PC. In the present case, the leg stroke of the one step 
movement (Δy), body height ( ), side length of the triangular-shaped cart ( ) and 
time step are assumed to be equal to 0.03m, 0.05m, 0.12m and 6 seconds, 
respectively. During analysis, following data have been considered:  L

h a

1=0.04m, 
L2=0.06m, m1=0.002Kg, m2=0.012Kg, mb=0.075Kg, coordinates of CG of the robot 
at the starting point (0,0,0.05)m, foot tip points during starting for the first leg 
(0.09,0.05,0)m, for the second leg (-0.09,0.05,0)m and third leg at (0.01,-0.11,0)m.  
 It is important to mention that forward kinematics always leads to a single pose 
matrix for any robot. However, several robot configurations (i.e., joint angle values) 
may result in the same foot tip point corresponding to a fixed location of the CG. In 
the present study, for each joint two solutions have been obtained corresponding to 
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each joint variable and those combinations of solutions have been preferred which 
are falling within the reachable workspace of the robot. Utilizing the solutions 
obtained through inverse kinematics, three trajectories (one each in three different 
time zone: 0 2;  2 4 and 4t t t 6      ) for joint angle, speed and acceleration 
have been derived as mentioned in [9]. From Eqs. (6) & (7), it is clear that joint 
torques is comprised of four components: inertial component (M-Comp), centrifugal 
and/or Coriolis component (H-Comp), Gravity component (G-Comp) and reaction 
force component (R-Comp). Fig. 3 shows all those four components of each joint of 
the leg for the first phase of the locomotion cycle. Variation of total torque values of 
first and second joint of all the legs are also compared and presented in Figs. 4 and 5 
for the second and third phases of the locomotion cycle, respectively.  
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               (c) Joint 1 of Leg-2,                                      (d) Joint 2 of Leg-2, 
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(e) Joint 1 of Leg-3,                                            (f) Joint 2 of Leg-3, 

Figure 3: Contribution of M-comp, H-comp, G-comp and R- comp of on the joint 
torques over the first phase of the locomotion cycle.  
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Figure 4: Total torque (in N-m) distribution of each leg over the second phase of the 
locomotion cycle (time in second): (a) first joint, (b) second joint.  
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Figure 5: Total torque (in N-m) distribution of each leg over the third phase of the 
locomotion cycle (time in second): (a) first joint, (b) second joint.  

 
During this study, following common observations were made.  
(i) During the first 1/4-th and last 1/4-th time period of every stages of locomotion 

cycle, inertial component of torque has been found to be approximately constant 
and in-between it is observed to be zero. It is because of the acceleration 
distributions considered in the study.  

(ii) Reaction force component of torque has overpowered the others for retraction 
phase of every leg. It might be due to the fact that the motors alone are trying to 
supply the balance force required at the tip-point of the joint and there is no other 
device present to provide the same.  

(iii) Whenever a leg is shifting its mode from support phase to swing phase, torque 
requirement on that leg has come out to be more than the others.  

(iv) For the first joint:  Contribution of gravity component in all the legs has been 
found to be more compared to the other two components. Gravity component has 
been observed to be varying in the positive side only for Leg 1. On the other 
hand it is varying both in positive as well as in negative side for the other two 
legs.  

(v) For the second joint:  Contribution of centrifugal and/or Coriolis component in 
all the legs is observed to be very low. It might be due to the fact that the first 
joint does not have any contribution on this component of torque.  

(vi) Total torque requirement for the second joint of every leg has been found to be 
more in compared to the first joint during retraction phase. On the other hand, 
the thing comes out to be reverse during protraction phase. This is also due to the 
presence of reaction force.  
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5 Conclusions 
Kinematics, dynamics and stability of a three-legged robot have been analysed in the 
present study. Both direct and inverse kinematics has been analysed, while the robot 
is following a straight line path on a vertical flat surface. Movement of the robot is 
ensured considering that at any instant of time only one leg can be in swing phase 
while the other two will provide necessary support. Joint torques has been computed 
continuously for the full locomotion cycle and compared between the legs. All the 
developed mathematical models have been tested through computer simulations. 
Computational complexity of the program developed for solving the mathematical 
expressions is found to be very low, making it suitable for on-line implementations.  
More torque requirement has been observed for the first joint of each leg and for 
every joint during support phase than in swing phase. For the first joint of each leg, 
torques varies between (-0.25N-m to 0.2N-m) and those for the second joint vary 
between (-0.7N-m to 0.9N-m). This is a very low torque requirement and low power 
servo motors will be sufficient to control them. A ZMP based stability analysis has 
been carried out during this study. It has been observed that the postures adopted 
during the vertically straight line movement of the robot are stable and feasible.   

 The present study can be extended in a number of ways, such as; dynamic 
stability analysis based on friction cone approach [4], optimization of joint torques or 
ground reaction forces of the robot while it is following a curvilinear path.  
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