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Abstract 

 
This paper presents the use of neural network for condition monitoring of ball bearings using 

statistical parameters. The time domain vibration data corresponding to normal running and 
various fault conditions (ball fault, inner race fault, outer race fault in O3, O6, and O12 relative 
position) were used. The data were segmented into groups and statistical features like Kurtosis, 
Skewness, Variance, RMS and normalized 6th moment were calculated for each of these groups. 
These five parameters were used as input for a neural network consisting of one hidden layer with 
sixteen neurons and one output layer with one neuron. The network was first trained for single 
faults and then by combination of faults. This trained network was then tested by another set of 
data which was unknown to the network and the success rates were calculated for each type of 
input. The results proved the effectiveness of the neural networks in diagnosis of the bearing 
condition.  After testing success of the network for fault diagnosis, the effectiveness of each 
parameter was tested. This helped to relatively grade the five parameters and also confirmed that 
only a single parameter was not sufficient for accurate fault diagnosis. Also, relative grading of the 
parameters provided flexibility to eliminate less significant parameters, leading to lesser number of 
inputs, thus reducing the computation required. This makes the neural network suitable for being 
adopted for on-line condition monitoring.  

Keywords: Neural Network, Ball Bearing, Condition Monitoring, Vibration Data, Statistical        
Parameters. 

 
1  Introduction 

Condition monitoring is a process of monitoring a parameter of condition in machinery, 
such that a significant change is indicative of developing failure. It is a major component 
of preventive maintenance. The use of vibration signals is quite common in the field of 
condition monitoring and diagnostics of rotating machinery [1-6]. Detection of machine 
faults like mass unbalance, rotor rub, shaft misalignment, gear failures and bearing 
defects is possible by comparing the vibration signals of a machine operating with and 
without faulty conditions. It is difficult to detect bearing condition using time domain 
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vibration signals because of the presence of variety of noise and wide spectrum of 
bearing defect signals. So, it is imperative to identify the characteristic features relevant 
to the bearing conditions [3]. Scheer et al [7] and Samanta et al [3] studied fault 
diagnostics using vibration analysis and concluded that an automated system like neural 
network is more efficient and time saving than manual trend setting of results.               

Neural networks are composed of simple elements operating in parallel. These 
elements are inspired by biological nervous systems and are called as neurons. We can 
train a neural network to perform a particular function by adjusting the values of the 
connections (weights) between elements [8]. The vibration signals obtained from a group 
of sensors are subjected to direct and simple processing for extraction of features that are 
subsequently used as inputs to the Artificial Neural Networks (ANNs) for diagnosing 
bearing condition. Good predictability, low generalization error and reduced amount of 
computation, so as to allow the user to experiment with larger networks and train them 
on larger data sets were the main reasons for selecting ANN for the present study. 

 There are many types of neural networks like feed-forward back-propagation, radial 
basis network, dynamic network, etc. Amongst these, the feed-forward back-propagation 
type of neural network was selected. Because, the literature [8] indicated that this type of 
network has higher generalization capacity, ability to develop a relation between an input 
vector and corresponding target during training and it can classify input vectors in an 
appropriate way as defined by the user. Also, properly trained back-propagation network 
give reasonable answers when presented with inputs unknown to it. 

2  Data Acquisition 
 
Large data are required for training and validation of neural networks. The data for the 
present study was borrowed from the Bearing Data Centre website of the Case Western 
Reserve University [9]. The data is basically vibration amplitudes for various positions 
and types of faults for ball bearings using an experimental set up. It consisted of a 1.5 
kW electric motor, running at 1797 rpm, coupled to a dynamometer and the test bearings 
supporting the motor shaft. The details of the test bearings used are shown in Table 1& 2. 

The data were acquired at two sampling rates: 12 kHz and 48 kHz for drive end 
bearing faults, by sensors mounted at DE and FE, both. The bearing defect sizes used 
were: 0.178 mm diameter & 0.28 mm depth. Defects in inner race, ball and outer race (at 
different positions relative to the load) were used to acquire the data..   

Table 1: Drive end bearing: 6205-2RS JEM SKF, deep groove ball bearing [9] 

Inside diameter Outside diameter Thickness Ball diameter Pitch diameter 

25 mm 52 mm 15 mm 8 mm 40 mm 
 

Table 2: Fan end bearing: 6203-2RS JEM SKF, deep groove ball bearing [9] 

Inside diameter Outside diameter Thickness Ball diameter Pitch diameter 

18 mm 38.5 mm 12 mm 6.5 mm 28.5 mm 
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3  Data Segmentation and Selection of Parameters  
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Figure 1: Variation of parameters for normal (dotted line) & faulty (solid line) data sets. 
(X-axis: Input data sets; Y-axis: Selected Parameter) 
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The 121000 data points obtained for each running condition were normalized in the 
range of 0.0 and 1.0 and then divided into 50 data sets of 2420 data points each. For each 
data set, five parameters viz. Kurtosis, Skewness, Variance, Root Mean Square & Sixth 
moment were obtained [3] by using MATLAB. Values for the kurtosis and 6th moment 
within a group were again normalized between 0 & 1. The data sets were arranged in the 
matrix of (50x5) in such a way that each column represented a particular parameter 
(RMS, Variance, etc.) and each row represented all the five parameters of a group. Out of 
the 50 groups, 30 were used for training and the remaining 20 for simulation (testing).  
For ascertaining the suitability of these parameters as inputs to the neural network, 
graphs as shown in Fig. (1) were plotted, clubbing parameters for both -normal & faulty 
running conditions. From the graphs, it is observed that there is a clear distinction 
between the values of the selected parameters for normal running and faulty bearing 
conditions. Hence these parameters could be used as diagnostic parameters. 

4  Network Architecture 

 

Figure 2: Network architecture 

The architecture of the network is shown in Fig. (2). The feed-forward, back-propagation 
network consists of 5 Input elements, 16 neurons in the hidden layer and 1 output neuron. 
The training function was TRAINLIM, transfer function - TANSIG and performance 
function was MSE. Levenberg-Marquardt algorithm being the fastest back-propagation 
algorithm, the TRAINLIM function was used for training. Numbers of neurons in the 
hidden layer were varied and training was attempted. The optimum results were found 
for 16 neurons in the hidden layer. The five input elements were chosen to correspond to 
each of the five statistical parameters. The input to the network was in form of matrix 
shown in Fig. (3). 

[Kurtosis1………….………….………….………….Kurtosis30 
Variance1………….………….………….………….Variance30 

Skewness1………….………….………….………….Skewness30 
RMS1………….………….………….………….……...RMS30 

6thmoment1………….………….………….……….6th moment30] 

Figure 3: Input matrix 
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5  Training of Network 

The training of the neural network was carried out using the NNTOOL user interface in 
MATLAB. The initial weights & biases were automatically generated by the user 
interface. The parameters of the network were Target mean square error (MSE): e^-15, 
Minimum gradient: e^-10, Maximum iteration number (epochs) :1000. First, a single 
type of fault was fed as input to the network. The dimension of the input matrix was 
5x60 which comprised of 30 fault condition data sets & 30 normal condition data sets. A 
sample input matrix for single fault is shown in Fig. (4). 

[ fault (30x5)’ normal (30x5)’] 
 

Figure 4: Sample input matrix for single fault 

The target matrix for single type fault fed to the network had a dimension of 1x60. It 
was desired that for fault data input, the ideal output should be 0 and for normal data 
input, it should be 1. A schematic of ideal output is shown in Fig. (5). It means, in the 
target matrix, the variable corresponding to faulty input is given a value 0 while the 
variable corresponding to normal bearing data input is given a value 1. Sample target 
matrix for single input is shown in Fig. (6). 

  
Figure.5: Ideal output 

 
[ 0000 . . .  0  1 111 . . .1] 

{30}     {30} 

Figure 6: Sample target matrix for single input 

In the next step, a combination of two types of fault was fed as input to the network. 
The schematic of input matrix for two faults is shown in Fig. (7). The corresponding 
targets were also fed. A sample target matrix for double input is shown in Fig. (8). 

                         [ Fault data (60x5)’ normal data (30x5)’] 
 
                       Figure 7: Sample input matrix for two faults 

[ 0000 . . . . . .   0 1 111 . . . . . .1] 
{60} {30} 

  Figure 8: Sample target matrix for double input 
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The network was trained for all possible combination of faults taken two at a time. 
In the same way, the network was trained by feeding a combination of three, four & five 
faults as inputs in incremental steps. Training performance graphs were obtained for each 
case & training success was computed. This training process was carried out for faults at 
driving end (DE) as well as faults at fan end (FE). 

6  Testing of Network 
 
After the network was trained, the testing of the network was carried out. For testing of 
the network NNTOOL user interface was used again. During testing, the network was 
simulated by feeding a known fault data to the network in incremental steps of one, two, 
three, four & five types of faults. During testing, no targets were fed to the network. 
Graph of target output v/s input were plotted for gauging the test success and all the 
graphs showed good test results. Due to lack of space these graphs are not included here. 
Instead, the training and test success results for faults at driving end and fan end bearings 
are tabulated and shown in Tables 3 and 4 respectively. 
 

Table 3: Training & Test success results for driving end bearing data 

 

S. No. Fault data used Training Success Test Success 
1 Ball 60/60 (100%) 16/20 (80%) 
2 Inner Race 60/60 (100%) 20/20 (100%) 
3 Outer race - O3 59/60 (98.3%) 20/20 (100%) 
4 Outer race - O6 60/60 (100%) 20/20 (100%) 
5 Outer race  - O12 56/60 (93.4%) 20/20 (100%) 
6 Outer race - O6 ,O12 90/90 (100%) 40/40 (100%) 
7 O6, O12 and Inner Race 120/120 (100%) 60/60 (100%) 
8 O6 , O12, Inner Race, Ball 150/150 (100%) 76/80 (95%) 
9 All faults 179/180 (99.4%) 96/100 (96%) 

Table 4: Training & Test success results for fan end bearing data 

 S. No. Fault data used Training Success Test Success 
1 Ball 60/60 (100%) 17/20 (85%) 
2 Inner Race 60/60 (100%) 20/20 (100%) 
3 Outer race  - O3 60/60 (100%) 20/20 (100%) 
4 Outer race  - O6 60/60 (100%) 20/20 (100%) 
5 Outer race  - O12 60/60 (100%) 20/20 (100%) 
6 Outer race - O6, O12 90/90 (100%) 40/40 (100%) 
7 O6, O12 and Inner Race 120/120 (100%) 60/60 (100%) 
8 O6, O12, Inner Race, Ball 144/150 (96%) 77/80 (96.25%) 
9 All faults 174/180 (96.6%) 97/100 (97%) 
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6.1    Performance of Statistical Parameters in Defect Diagnosis 
 
To decide the relative significance of the statistical parameters and their contribution to 
network performance, the individual parameters were tested on a new network. This 
network consisted of 5 input elements, 16 neurons in the hidden layer and 1 output 
neuron. This network was trained, tested and the results were analyzed. The test results 
for individual parameters for each type of fault at driving end are shown in Table 5. 
 

Table 5:  Test success for individual parameter for each type of fault - DE data 

Parameter  Ball fault Inner race 
Outer race- 

O3 
Outer race- 

O6 
Outer race- 

O12 

Kurtosis 
19/20  
(95%) 

19/20  
(95%) 

20/20 
(100%) 

20/20 
(100%) 

18/20  
(90%) 

Skewness 
18/20  
(90%) 

20/20 
(100%) 

20/20 
(100%) 

20/20 
(100%) 

20/20  
(100%) 

Variance 
20/20 

(100%) 
17/20 
 (85%) 

20/20 
(100%) 

20/20 
(100%) 

20/20 
 (100%) 

RMS 
20/20 

(100%) 
20/20 

(100%) 
20/20 

(100%) 
20/20 

(100%) 
18/20 
 (90%) 

6th 
moment 

17/20  
(85%) 

19/20  
(95%) 

14/20  
(70%) 

18/20  
(90%) 

16/20  
(80%) 

7 Results and Discussion 

From Tables 3 and 4, it is seen that training of network using single fault data gives 
almost 100 % test and training success in all cases, with few exceptions like ball faults, 
outer race O3 & O12 positions. Combination of faults also results in good performance 
of the network. It is seen that the test success rate of the network in predicting ball faults 
is less than 100 %. The possible reason for this is - as the ball is constantly rotating and 
revolving, the fault may not always produce impacts due to ball defect and hence the 
vibration amplitudes don’t change. These tables also show deviation in the test success 
rates for O3 and O12 type of faults. The decrease is probably because the bearing load 
zone is outside the positions of sensors and hence vibration signals may be weak. This is 
shown in Fig. (9).  

Table 5 shows the test success for each of the parameters for each type of fault. 
From this table it is seen that the parameter 6th moment gave the least amount of success 
rate and hence this parameter is less significant. This was validated by finding the 
success rate, after removing this parameter from the input to the network. Table 5 also 
shows that kurtosis is the next insignificant parameter.  We can also conclude that 
Skewness, Variance, RMS were relatively consistent in the success rate and thus 
contributed significantly to the testing success.  After comparing table 3 and table 5 it is 

7 
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observed that single statistical parameter cannot be independently given to the network 
as input. 

load zone 

Figure 9: Bearing load zone and sensor locations. 

8    Conclusion 
 
From the results obtained, it can be concluded that a properly trained neural network can 
diagnose faults in the bearing to a high level of accuracy. For getting a good performance 
from the network, the input should have data for normal running along with all faulty 
running conditions of bearing. Out of the various statistical parameters used, the 6th 
moment of the vibration data can be safely dropped from the input matrix as it has very 
less effect on the performance of the network. Hence, the network can also be trained by 
a smaller input matrix, reducing the computation time. This increases its suitability for 
on-line condition monitoring. One needs to find out the best parameters and the optimum 
number of parameters to be used for input to the network for getting accurate results 
from the network.  
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