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A Nonlinear Elastic Transmission for
Variable-Stiffness-Actuation: Objective and Design

Soumen Sen, Antonio Bicchi

Abstract

Nonlinear elastic transmission is an essential component of mechanisms

meant for passively variable stiffness. Variable-stiffness-actuditiais applica-
tions in areas like human friendly robots, legged machines, artificiathpsss,
vibration control etc. Most of the designs in literature use nonlinearity irstran
mission for the sake of nonlinearity only there does not exist any guideline for
choosing the function. In this article, design of an elastic transmissionsspied
with an objective and a functional specification for an optimal stiffnebsbieur.
A principle is derived from passive properties of biological musclestaia the
elastic function. Consequently, a general method is explained to syretzesam
profile for the obtained function, followed by description of the springigtes
Finally, an antagonistic implementation is presented with initial result.

Keywords: Nonlinear elastic transmission, Exponential spring,
Variable-Stiffness-Actuation, Antagonistic actuation

1 Introduction

Impedance control has been put through for robotic martijpman interactive tasks
by Neville Hogan in [1]. However, impedance variability wmegyday task ever prevail
in the biological world. This forms an important area in @mporary biomechan-
ics research [2]. In physical Human Robot Interaction (pHiRIpedance/stiffness
variability has been proved to be effective in adding irticnsafety [3], as well as
in performance enhancement. Variable stiffness mechanisme been successfully
incorporated in applications such as legged locomotiongddskeletons and rehabil-
itation devices [5], in structural vibration suppressiéh pnd automotive suspension
system. One important attribute is that variability is @vedpassivelywith an elastic
element, where the transmitted force beaidoamlinear relationship with the deflec-
tion the element undergoes. Till date, most of the design®oofinear springs have
been done quite arbitrarily - nonlinearity for the sake ofihg a nonlinearity only. In
such designs either a nonlinear elastically deformablerizdt(e.g. rubber) has been
used, or, a mechanism through mechanical linkages/camawiitear spring has been
built [7, 8]. In some designs nonlinearity of an abrupt chantay be manifested near
singular configurations.

In this article, a new nonlinear transmission design anthithod are described,
addressing some of the limitations stated above. One of bfectives is that the
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stiffness change should occur rapidly. To achieve an optstiness behaviour, a
principle is derived from properties of biological muscle followingreodel from lit-
erature [9] and a force-deflectidanctional specificatios obtained in order to attain
the optimal behaviour. Then, a general method is depictsgirithesize a cam profile
and the mechanical design is presented. As example, anoaigtig implementation
of variable stiffness actuation using the developed trassion is presented.

2 Nonlinear Elasticity of Transmission

2.1 Borrowing principle from biological muscle properties

It is not clear that whiclfiorce-displacemerfunction behaves best in varying stiffness.
Apparently, this function should be task dependent, buktieno specific guideline
hitherto available in literature. Stiffness/impedanceat#on is ubiquitous in nature
and the living world does this in an efficient way. Hence, bating principle from
biological muscle properties may help.

2.1.1 The principle

In search for the principle, we may study mathematical nodébiological muscles
from literature. Many of the researches amusclé are still based on A.V. Hill's
model and subsequent refinements by A.F. Huxley [10, 11]chwviere based on very
extensive and illustrious experiments. Later, Pinto andgHn [9] have elaborately
enlightened the solid-mechanics of muscle. Experimerts/sh passive muscle fi-
bre gets progressively stiffer with larger stretches. &antd Fung [9] has found that
derivative of musclestress(say s) with respect tdLagrangian strain(sayey,) is lin-
early related to stressat that point (the experiments were carried out on a rabhitthe
muscle). It is established later that many collageneosséis, including tendon, skin
and skeletal muscle obey similar stress-strain charatitayi In notation,

ds.

dEL - 04(8-1-6),

wheree;, = L% Ly = initial length, L the current length and and 5 are constant
parameters.
Assuming the transmission body as a constant cross seetigithl element, we

can derive
Lo dF F
Adq:_a<A+B)’ (1)
where, F' is the force transmitted4 the invariant cross sectional area ands the
elongation. Above definition is equivalent to stating fallng proposition.

Proposition: The linear relationship betweestiffnessat a point of displacement
and theforce at that point leads to aexponentiaforce-displacement characteristic,

F=0(z) = pexp (Ii);r) - K, @)

where,u and K = A are constant coefficients ands an exponent.
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Proof: Integrating Eq. (1) we get the above expression in Eq. (2pagisn. =
being the only independent variable, stiffness by definiim% =i (F+ ApB),
which establishes the affine connection between stiffnedsace. O

2.1.2 Relative force error

Salisbury [12] had introduced the idea of designing a spiaged on the criterion of
keeping the relative force error constant over the entingeeof operationg > 0. If
F = @ (z) be the force function, the relative force error can be emn%sasﬁ =

<I>(1x) dq;f) dx. ldentifying a minimum sensible initial deflection of spriagd, and the
relative force error corresponding g asCy, then, if it is intended to maintain the

relative error constant, above equation gives an expaaesaiution,

F=%(z)= Aexp(?] ) (3)

0

Similarly, the relative force error, at = 0 of Eq. (2) is%F - . ltis
interesting to note that the relative force error of Eq. (@)r@aches a constant value
over the range of operatidh < = < X,,,. (maximum deflection), as illustrated in
Fig. (1, right). A chosen value af = <3k reduces the element into a Salisbury's
spring.

Now, K = p atz = 0 makes initial relative force error undefined. For other ealu
of K, there will be a force offset, which is equivalent to a stffs offset, because of
the linearity in our chosen principle. In practice, the affset §,,;,) will never
be zero and the minimum controllable force is limited by dead (backlash), dry
friction and motor torque ripple.

2.2 Synthesis of force-displacement function
For givend, andCy, the relative force error of Eq. (2) &k is

oF B exp(a) o
L e A KLY @
Fp, pexp(a) — K
If F.q. be the maximum force to be transmitted, then, defining dimoafess
ratios, Frqiio = Fm*, Lyatio = X“’O“ andS,qiio = C°L° , the following nonlinear

equation needs to be solved to determine expoaent

Q €xp (Oé) (Fratio - 1) + Sratio €Xp (a) — Sratio €Xp (Lratioa) = 0. (5)

which is obtained after some reduction and eliminationagifiie expressiondy =
Foip (Zratie — 1) andp = % K andy are obtained easily using other
boundary conditions involving,.q.., Finin, @andX 0.

For the chosen specification &, = 5mm, F,,.., = 100N, F,,;, = 0.5N,
Xmaz = 50mm, Cy = 0.01N/N anddy, = 0.1mm, value ofa = 0.61 is computed

from Eq. (5) and following is obtained as a reasonable spring
F = 0.224 exp(0.122x) + 0.09, (6)

Fig. (1, left) shows force behaviour with deflection for btk designed and the actual
spring .
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Figure 1: (Left) The exponential spring of Eq. (6) designexhf first principle. Spec-
ification given byLg = 5mm, Fjq. = 100N, F; = 0.5N, Xnee = 50mm,
Co = 0.01N/N, §p = 0.1mm and exponent = 0.61. This figure also superimposes
calibration data of the actually developed physical spifirgection 3.2. The deviations
are due to nonzero roller radius, friction and manufactuamor of the cam profile,
discussed in the next section. The spring actually can atentjl 50mm. (Right)
Relative force error with displacement, as the initial ®eeror is varied for the above
designed spring.

2.3 Performance comparison among a class of spring functi@n

It is imperative that how fast a particular stiffness medsiancan adapt the demand
of stiffness change depend on the passive force-displattecharacteristic inherent
in the elastic element. Here, an attempt is made to underst@mechanicsn view
of this rapidity. The basic simple model used for benchnraykhe examination is
shown in Fig. (2, left). This resembles the fam@&rachistochrongroblem of Johann
Bernoulli, but we don’t have any unique analytical solut&imilar to theBrachis-
tochrone Cycloid Intuitively, the fastest motion can occur if all tip@tential energy
stored can be transformed into kinetic energy instantlynfrest; a step function arises
(which is discontinuous), i.estiffnessshould fall in a step. However, present require-
ment is for a continuous function in view of realizability.

We restrict our view within functions leading to periodiccokations, namely,
power springs of the forn¥(xz) = axz™, where,a is a constant coefficient andis
an integer exponent. Fractional expondhts n < 1 are not considered. These are
conservative systems of the fotin- U (z) = 0. Multiplying by &, an integral equation
is obtained

1 x
5332 + / ¥(n)dn = constant= Total energy ()
0

The second term is the potential energy and is give%“b)'[/(n)dn = “f;:l . We
study (rather in a brute force way) rapidness behavioureede basic functions. As
shown in Fig. (2, left), numerically free motion of the sgrimass system is solved
with Uy at rest.Uj is kept equal for all, as well the stiffness valugy(= %il{ ).

=T
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Minimum time behaviours of motion between two stiffnesauesli, and K ; for all
springs are watched.

Simulation results are shown in Fig. (2, right). A trend isetved that the power
springs tend to reach a minimum time value with increasitgger exponent. It is
compared with an exponential function of the folini:) = sign(z)a exp(b|z|); with
the specified{, and K, itis seen to operate in a minimum time among all the springs
dealt here. However, this function does not have an equilibpoint, but is stable
about origin. For this springg, is chosen corresponding to a linear spring for given

Ky

Uy and K. Final position is computed by, = %log (ﬁ) Simulations show that

an exponential spring can act fastest in moving flggto K ¢(see caption of Fig. (2)).
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Figure 2: (Left) A massV/ is acted on under eentral conservativéorce field (top).
Equivalent spring-mass system is in the bottom. (Right)3Va$ = 0.1kg, initial
stored energy i8/y = 0.1J and the initial deflection: = 100mm for all the springs.
The system is released from rest with and the time to reach from stiffness values
Ky to Ky = K, /2 is observed. Power springs show decreasing time with isorga
n. The behaviour tends to reach a minimum time.as co. For a choseexponential
spring, the movement from stiffne$s, to Ky happens with aninimum timeof 0.445
which is lowest among all the springs considered. The dyosimisolved numerically
using variable order, multistep solver (namely ode15s clA&).

3 Design for Any Continuous Monotonic Function

Several designs of nonlinear springs are available iralitee, including variable cross
section leaf spring, conical spring, Belleville springdar-spring-linkage mechanisms
and even exploiting nonlinear properties of rubber etc. éNaofithese is suitable for at-
taining a specified function. Migliore et al. in [13] devetmpa quadratic spring using
cam profile. The present design looks similar to this, butiesia fundamental differ-
ence which has been developed independently and is morediedh The approach
of this article exploitssirtual work principle (unlike the method in [13]), which is el-
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egant, more general and analytical and suitable for regliany arbitrary continuous
monotonic spring function.

3.1 Synthesis of cam profile

One way to physically realize a desired function is incogpiog a cam profile with a
follower loaded by a linear spring. Synthesis of such a praféeds a transformation
from the force-displacement domain in Eq. ( 2) to a cartegeometric plane. Here, it
is achieved usingrinciple of virtual work This is a general method in the sense that
any continuous monotonic function can be realized in a maysiesign.

Say,Y = U (z) is the desired cam profile, wheké is the displacement of the
cam follower, which is loaded by a linear spring of fixed stifésk,. Desired force
functionin cartesiarlX is F'x = F of EQ. ( 2). Fig. (3, left) explains the principle (one
half of the mechanism). With a co-efficient of rolling frioti v, Fx = Fg-ttant
where,F is a function of positiory”.

In order to arrive at an initial solution, we simplify the jptem by assuming the
following: rolling friction is zero and the roller radius Emall enough so that the
locus of the roller centre and the geometric profile= ¥(x) is indistinguishable. For
virtual displacements ohx and Ay, virtual work equality is given by

2k, Ydy = Fx dz, where2 accounts for two sides of the profile.

Using expression foF'y and solving above differential equation, we get

\If(x):\/kl{'ualjoexp<g)x> —KZ—FC}, (8)

where,C is constant of integration. With zero initial conditiafl, = — 4L,

3.2 Physical realization

The synthesized cam profile is reproduced in an Aluminiuncloley CNC milling.
A 'V’ groove along the profile guides the follower wheel. Failer wheel is spring
loaded with constant, = 1N/mm approximately. The wheel and the spring again
are mounted on another carriage,which is pulled by a rod.siifiness is actually felt
at this rod end. A CAD model is illustrated in Fig. (3, righffhe actual assembled
spring can be seen in the photograph of experimental setavprsim Fig. (4).

The spring is calibrated by measuring the displacementigiran encoder
mounted on a pulley. Force is measured in steady states algndjing rope , at-
tached on the rod end by a digital linear force gaugé bV resolution obtained from
Mecmesin. A nonlinear least-square fit characteribtie- 0.368 exp(0.099x) + 0.01
is obtained, which is plotted in Fig. (1, left), along withketmeasured data points.

4 Implementation: A Simple Antagonistic Experimen-
tal Setup

Variable stiffness actuation can be implemented in vaneays and be broadly divided
into (1) mechanisms for explicit stiffness control and (@frgess control through an-
tagonistic actuation. In type-2, stiffness generatingdsrbelong to the kernel of the
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Figure 3: (Left) Virtual work principle is applied to syntige the geometric profile
U(x). Fg is the linear-spring forcef’ is friction-force, R is the reactionf is the
instantaneous contact anglebe the roller radius. (Right) CAD model of the designed
exponential spring.

input forces resembling a two-fingered grasp. This antagicractuation prevail mus-
culoskeletal system of the animal world. In the presentedurobot joint is driven
by two motors in antagonism through tendons on exponenétatie transmission ele-
ments as developed above. This setup, as illustrated if&ikgft), is primarily meant
for carrying out experiments to validate different conphlgorithms for simultane-
ous control of motion and stiffness. One such algorithm usedon-force-sensors
to implement anull-spacel force based impedance contralldtig. (4, right) shows
one such result, where, joint velocity and stiffness vamergely. As stated earlier,
stiffness is related to the null-space (internal) forcesheftendon system through a
linear relationship because of exponential characterigtternal force in the figure is
proportional to joint stiffness (in absence of externatlpa

5 Conclusions

The article has described development of a nonlinear elastnsmission element
whose design is motivated from the properties of biologmakcle. First an objec-
tive is identified in terms of rapidity of change in stiffne3$en, a principle is derived
from muscle fibre passive property that stiffness shouldrbpgational to force, which
leads to an exponential characteristic. Simulations aréeckout to examine and com-
pare the rapidity of stiffness variation behaviour amondeasof power springs and
exponential spring. It is observed that an exponentiahgpran behave faster than the
others in the class. An exponential spring is then desigred & given specification.
A virtual work principlebased method is adopted for synthesizirgae profile un-
like the development in [13]. This method is analytical ameral and can be used
for any arbitrary continuous monotonic function. The sgriemponents are manufac-
tured and assembled and the final spring is then calibratiactds characteristic and
is compared with the original designed function. Small déeh of the actual char-
acteristic from the designed one is likely to be due to presexi friction, zero roller
diameter assumption and manufacturing error of the prdfileally, one experimental
antagonistic implementation is described using two sugoe&ntial springs, driven
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Figure 4: (Left) Simple antagonistic Variable Stiffnesstéator. (Right) The joint is

commanded to move following a quintic trajectory throutgfhdeg in1.545. Com-

manded joint velocity¥) and internal force&;,,;) follows F;,,; = % Flimit IS

a limit force. The velocity and stiffness responses are show

by motors and tendons. The setup is intended for carryingegpériments for test
and validation of controller algorithms. One sughll-space Force Based Impedance
Controller using force sensors is tested on this setup and initialresslmultaneous
control for internal-force (stiffness) and motion is pnetesl.
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