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A Nonlinear Elastic Transmission for
Variable-Stiffness-Actuation: Objective and Design
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Abstract

Nonlinear elastic transmission is an essential component of mechanisms
meant for passively variable stiffness. Variable-stiffness-actuationfinds applica-
tions in areas like human friendly robots, legged machines, artificial prostheses,
vibration control etc. Most of the designs in literature use nonlinearity in trans-
mission for the sake of nonlinearity only− there does not exist any guideline for
choosing the function. In this article, design of an elastic transmission is presented
with an objective and a functional specification for an optimal stiffness behaviour.
A principle is derived from passive properties of biological muscles to obtain the
elastic function. Consequently, a general method is explained to synthesize a cam
profile for the obtained function, followed by description of the spring design.
Finally, an antagonistic implementation is presented with initial result.

Keywords: Nonlinear elastic transmission, Exponential spring,
Variable-Stiffness-Actuation, Antagonistic actuation

1 Introduction
Impedance control has been put through for robotic manipulation in interactive tasks
by Neville Hogan in [1]. However, impedance variability in everyday task ever prevail
in the biological world. This forms an important area in contemporary biomechan-
ics research [2]. In physical Human Robot Interaction (pHRI) impedance/stiffness
variability has been proved to be effective in adding intrinsic safety [3], as well as
in performance enhancement. Variable stiffness mechanisms have been successfully
incorporated in applications such as legged locomotion [4], exoskeletons and rehabil-
itation devices [5], in structural vibration suppression [6], and automotive suspension
system. One important attribute is that variability is achievedpassivelywith an elastic
element, where the transmitted force bears aNonlinear relationship with the deflec-
tion the element undergoes. Till date, most of the designs ofnonlinear springs have
been done quite arbitrarily - nonlinearity for the sake of having a nonlinearity only. In
such designs either a nonlinear elastically deformable material (e.g. rubber) has been
used, or, a mechanism through mechanical linkages/cam witha linear spring has been
built [7, 8]. In some designs nonlinearity of an abrupt change may be manifested near
singularconfigurations.

In this article, a new nonlinear transmission design and itsmethod are described,
addressing some of the limitations stated above. One of the objectives is that the
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stiffness change should occur rapidly. To achieve an optimal stiffness behaviour, a
principle is derived from properties of biological muscle following amodel from lit-
erature [9] and a force-deflectionfunctional specificationis obtained in order to attain
the optimal behaviour. Then, a general method is depicted tosynthesize a cam profile
and the mechanical design is presented. As example, an antagonistic implementation
of variable stiffness actuation using the developed transmission is presented.

2 Nonlinear Elasticity of Transmission

2.1 Borrowing principle from biological muscle properties
It is not clear that whichforce-displacementfunction behaves best in varying stiffness.
Apparently, this function should be task dependent, but there is no specific guideline
hitherto available in literature. Stiffness/impedance variation is ubiquitous in nature
and the living world does this in an efficient way. Hence, borrowing principle from
biological muscle properties may help.

2.1.1 The principle

In search for the principle, we may study mathematical models of biological muscles
from literature. Many of the researches on “muscle” are still based on A.V. Hill’s
model and subsequent refinements by A.F. Huxley [10, 11], which were based on very
extensive and illustrious experiments. Later, Pinto and Fung in [9] have elaborately
enlightened the solid-mechanics of muscle. Experiments show, a passive muscle fi-
bre gets progressively stiffer with larger stretches. Pinto and Fung [9] has found that
derivative of musclestress(says) with respect toLagrangian strain(sayǫL) is lin-
early related to stresss at that point (the experiments were carried out on a rabbit heart
muscle). It is established later that many collageneous tissues, including tendon, skin
and skeletal muscle obey similar stress-strain characteristics. In notation,

ds

dǫL
= α(s+ β),

whereǫL = L
L0

, L0 = initial length,L the current length andα andβ are constant
parameters.

Assuming the transmission body as a constant cross section length element, we
can derive

L0

A

dF

dx
= α

(

F

A
+ β

)

, (1)

where,F is the force transmitted,A the invariant cross sectional area andx is the
elongation. Above definition is equivalent to stating following proposition.

Proposition: The linear relationship betweenstiffnessat a point of displacement
and theforceat that point leads to anexponentialforce-displacement characteristic,

F = Φ(x) = µ exp

(

α

L0
x

)

− K , (2)

where,µ andK = Aβ are constant coefficients andα is an exponent.

2



15
th National Conference on Machines and Mechanisms NaCoMM2011-50

Proof: Integrating Eq. (1) we get the above expression in Eq. (2) as solution. x
being the only independent variable, stiffness by definition is ∂F

∂x
= α

L0
(F +Aβ),

which establishes the affine connection between stiffness and force.

2.1.2 Relative force error

Salisbury [12] had introduced the idea of designing a spring, based on the criterion of
keeping the relative force error constant over the entire range of operation,x > 0. If
F = Φ(x) be the force function, the relative force error can be expressed asδF

F
=

1
Φ(x)

dΦ(x)
dx

δx. Identifying a minimum sensible initial deflection of springasδ0 and the
relative force error corresponding toδ0 asC0, then, if it is intended to maintain the
relative error constant, above equation gives an exponential solution,

F = Φ(x) = A exp

(

C0

δ0
x

)

. (3)

Similarly, the relative force error, atx = 0 of Eq. (2) is δF
F

=
α
L0

µ

µ−K
δ0. It is

interesting to note that the relative force error of Eq. (2) approaches a constant value
over the range of operation0 ≤ x ≤ Xmax (maximum deflection), as illustrated in
Fig. (1, right). A chosen value ofα = C0L0

δ0
reduces the element into a Salisbury’s

spring.
Now,K = µ atx = 0 makes initial relative force error undefined. For other values

of K, there will be a force offset, which is equivalent to a stiffness offset, because of
the linearity in our chosen principle. In practice, the force offset (Fmin) will never
be zero and the minimum controllable force is limited by deadband (backlash), dry
friction and motor torque ripple.

2.2 Synthesis of force-displacement function
For givenδ0 andC0, the relative force error of Eq. (2) atL0 is

δF

F

∣

∣

∣

∣

L0

=
µ α

L0
exp (α) δ0

µ exp (α) − K
= C0. (4)

If Fmax be the maximum force to be transmitted, then, defining dimensionless
ratios,Fratio = Fmax

Fmin
, Lratio = Xmax

L0
, andSratio = C0L0

δ0
, the following nonlinear

equation needs to be solved to determine exponentα,

α exp (α) (Fratio − 1) + Sratio exp (α) − Sratio exp (Lratioα) = 0. (5)

which is obtained after some reduction and eliminations using the expressions,K =
Fmin

(

Sratio

α
− 1

)

andµ = Fmax+K
exp(αLratio)

. K andµ are obtained easily using other
boundary conditions involvingFmax, Fmin, andXmax.

For the chosen specification ofL0 = 5mm, Fmax = 100N , Fmin = 0.5N ,
Xmax = 50mm, C0 = 0.01N/N andδ0 = 0.1mm, value ofα = 0.61 is computed
from Eq. (5) and following is obtained as a reasonable spring,

F = 0.224 exp(0.122x) + 0.09, (6)

Fig. (1, left) shows force behaviour with deflection for boththe designed and the actual
spring .
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Figure 1: (Left) The exponential spring of Eq. (6) designed from first principle. Spec-
ification given byL0 = 5mm, Fmax = 100N , Fmin = 0.5N , Xmax = 50mm,
C0 = 0.01N/N , δ0 = 0.1mm and exponentα = 0.61. This figure also superimposes
calibration data of the actually developed physical springin section 3.2. The deviations
are due to nonzero roller radius, friction and manufacturing error of the cam profile,
discussed in the next section. The spring actually can elongate till 50mm. (Right)
Relative force error with displacement, as the initial force error is varied for the above
designed spring.

2.3 Performance comparison among a class of spring functions
It is imperative that how fast a particular stiffness mechanism can adapt the demand
of stiffness change depend on the passive force-displacement characteristic inherent
in the elastic element. Here, an attempt is made to understand themechanicsin view
of this rapidity. The basic simple model used for benchmarking the examination is
shown in Fig. (2, left). This resembles the famousBrachistochroneproblem of Johann
Bernoulli, but we don’t have any unique analytical solutionsimilar to theBrachis-
tochrone Cycloid. Intuitively, the fastest motion can occur if all thepotential energy
stored can be transformed into kinetic energy instantly from rest; a step function arises
(which is discontinuous), i.e.stiffnessshould fall in a step. However, present require-
ment is for a continuous function in view of realizability.

We restrict our view within functions leading to periodic oscillations, namely,
power springs of the formΨ(x) = axn, where,a is a constant coefficient andn is
an integer exponent. Fractional exponents0 < n < 1 are not considered. These are
conservative systems of the form̈x+Ψ(x) = 0. Multiplying by ẋ, an integral equation
is obtained

1

2
ẋ2 +

∫ x

0

Ψ(η)dη = constant= Total energy. (7)

The second term is the potential energy and is given by
∫ x

0
Ψ(η)dη = axn+1

n+1 . We
study (rather in a brute force way) rapidness behaviours of these basic functions. As
shown in Fig. (2, left), numerically free motion of the spring mass system is solved

with U0 at rest.U0 is kept equal for all, as well the stiffness value (K0 = ∂2U
∂x2

∣

∣

∣

x=x0

).
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Minimum time behaviours of motion between two stiffness valuesK0 andKf for all
springs are watched.

Simulation results are shown in Fig. (2, right). A trend is observed that the power
springs tend to reach a minimum time value with increasing integer exponentn. It is
compared with an exponential function of the formΨ(x) = sign(x)a exp(b |x|); with
the specifiedK0 andKf , it is seen to operate in a minimum time among all the springs
dealt here. However, this function does not have an equilibrium point, but is stable
about origin. For this spring,x0 is chosen corresponding to a linear spring for given

U0 andK0. Final position is computed byxf = 1
b
log

(

Kf

ab

)

. Simulations show that

an exponential spring can act fastest in moving fromK0 toKf (see caption of Fig. (2)).
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Figure 2: (Left) A massM is acted on under acentral conservativeforce field (top).
Equivalent spring-mass system is in the bottom. (Right) Mass, M = 0.1kg, initial
stored energy isU0 = 0.1J and the initial deflectionx = 100mm for all the springs.
The system is released from rest withU0 and the time to reach from stiffness values
K0 to Kf = K0/2 is observed. Power springs show decreasing time with increasing
n. The behaviour tends to reach a minimum time asn → ∞. For a chosenexponential
spring, the movement from stiffnessK0 toKf happens with aminimum timeof 0.44S
which is lowest among all the springs considered. The dynamics is solved numerically
using variable order, multistep solver (namely ode15s of Matlab c©).

3 Design for Any Continuous Monotonic Function
Several designs of nonlinear springs are available in literature, including variable cross
section leaf spring, conical spring, Belleville spring, linear-spring-linkage mechanisms
and even exploiting nonlinear properties of rubber etc. None of these is suitable for at-
taining a specified function. Migliore et al. in [13] developed a quadratic spring using
cam profile. The present design looks similar to this, but carries a fundamental differ-
ence which has been developed independently and is more methodical. The approach
of this article exploitsvirtual work principle (unlike the method in [13]), which is el-
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egant, more general and analytical and suitable for realizing any arbitrary continuous
monotonic spring function.

3.1 Synthesis of cam profile
One way to physically realize a desired function is incorporating a cam profile with a
follower loaded by a linear spring. Synthesis of such a profile needs a transformation
from the force-displacement domain in Eq. ( 2) to a cartesiangeometric plane. Here, it
is achieved usingprinciple of virtual work. This is a general method in the sense that
any continuous monotonic function can be realized in a physical design.

Say,Y = Ψ(x) is the desired cam profile, whereY is the displacement of the
cam follower, which is loaded by a linear spring of fixed stiffnessks. Desired force
function in cartesianX isFX = F of Eq. ( 2). Fig. (3, left) explains the principle (one
half of the mechanism). With a co-efficient of rolling friction ν, FX = FS

ν+tan θ
1−ν tan θ

,
where,FS is a function of positionY .

In order to arrive at an initial solution, we simplify the problem by assuming the
following: rolling friction is zero and the roller radius issmall enough so that the
locus of the roller centre and the geometric profileY = Ψ(x) is indistinguishable. For
virtual displacements of∆x and∆y, virtual work equality is given by

2 ks Y dy = FX dx, where2 accounts for two sides of the profile.

Using expression forFX and solving above differential equation, we get

Ψ(x) =

√

1

ks

{

µL0

α
exp

(

α

L0
x

)

− K x + C

}

, (8)

where,C is constant of integration. With zero initial condition,C = − µL0

α
.

3.2 Physical realization
The synthesized cam profile is reproduced in an Aluminium block by CNC milling.
A ’V’ groove along the profile guides the follower wheel. Follower wheel is spring
loaded with constantks = 1N/mm approximately. The wheel and the spring again
are mounted on another carriage,which is pulled by a rod. Thestiffness is actually felt
at this rod end. A CAD model is illustrated in Fig. (3, right).The actual assembled
spring can be seen in the photograph of experimental set up shown in Fig. (4).

The spring is calibrated by measuring the displacement through an encoder
mounted on a pulley. Force is measured in steady states alonga pulling rope , at-
tached on the rod end by a digital linear force gauge of0.1N resolution obtained from
Mecmesin. A nonlinear least-square fit characteristicF = 0.368 exp(0.099x) + 0.01
is obtained, which is plotted in Fig. (1, left), along with the measured data points.

4 Implementation: A Simple Antagonistic Experimen-
tal Setup

Variable stiffness actuation can be implemented in variousways and be broadly divided
into (1) mechanisms for explicit stiffness control and (2) stiffness control through an-
tagonistic actuation. In type-2, stiffness generating forces belong to the kernel of the
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Figure 3: (Left) Virtual work principle is applied to synthesize the geometric profile
Ψ(x). FS is the linear-spring force,Ff is friction-force,R is the reaction,θ is the
instantaneous contact angle.r be the roller radius. (Right) CAD model of the designed
exponential spring.

input forces resembling a two-fingered grasp. This antagonistic actuation prevail mus-
culoskeletal system of the animal world. In the present setup, a robot joint is driven
by two motors in antagonism through tendons on exponential elastic transmission ele-
ments as developed above. This setup, as illustrated in Fig.(4, left), is primarily meant
for carrying out experiments to validate different controller algorithms for simultane-
ous control of motion and stiffness. One such algorithm usestendon-force-sensors
to implement anull-spacel force based impedance controller. Fig. (4, right) shows
one such result, where, joint velocity and stiffness vary inversely. As stated earlier,
stiffness is related to the null-space (internal) forces ofthe tendon system through a
linear relationship because of exponential characteristic. Internal force in the figure is
proportional to joint stiffness (in absence of external load).

5 Conclusions
The article has described development of a nonlinear elastic transmission element
whose design is motivated from the properties of biologicalmuscle. First an objec-
tive is identified in terms of rapidity of change in stiffness. Then, a principle is derived
from muscle fibre passive property that stiffness should be proportional to force, which
leads to an exponential characteristic. Simulations are carried out to examine and com-
pare the rapidity of stiffness variation behaviour among a class of power springs and
exponential spring. It is observed that an exponential spring can behave faster than the
others in the class. An exponential spring is then designed from a given specification.
A virtual work principlebased method is adopted for synthesizing acam profile, un-
like the development in [13]. This method is analytical and general and can be used
for any arbitrary continuous monotonic function. The spring components are manufac-
tured and assembled and the final spring is then calibrated tofind its characteristic and
is compared with the original designed function. Small deviation of the actual char-
acteristic from the designed one is likely to be due to presence of friction, zero roller
diameter assumption and manufacturing error of the profile.Finally, one experimental
antagonistic implementation is described using two such exponential springs, driven
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Figure 4: (Left) Simple antagonistic Variable Stiffness Actuator. (Right) The joint is
commanded to move following a quintic trajectory through60 deg in1.54S. Com-
manded joint velocity (V ) and internal force (Fint) followsFint =

Flimit

1+10‖V ‖ , Flimit is
a limit force. The velocity and stiffness responses are shown.

by motors and tendons. The setup is intended for carrying outexperiments for test
and validation of controller algorithms. One suchNull-space Force Based Impedance
Controller using force sensors is tested on this setup and initial result of simultaneous
control for internal-force (stiffness) and motion is presented.
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