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Control and Stability Analysis of a Walking Knee-less
Biped with Torso

Abdul Jaleel, Tripuraneni Varun, Arun D. Mahindrakar

Abstract

Seminal works in biped walking such as [1] had assumed favorable initial
conditions on a limit cycle to start with. A more practical approach would be to
start the biped from a static resting position. This paper proposes a simplified and
straightforward approach for taking a biped robot from an initial restingposition
to a stable walking limit cycle. The biped model selected for the study is the ‘knee-
less biped with torso’. The problem is tackled in two stages -gait initiation from
rest followed by convergence tostable walking. Walking is divided into various
sub-phases depending on the state of the biped and simple state feedbackcontrol
laws are proposed for each phase. The individual control laws are mathematically
accrued into a single control law valid throughout the walking phase. Simulation
results validating the approach are presented.
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1 Introduction

The study of human locomotion and attempt at its imitation bybiped robots have been
an active area of research for many years. The motivation behind this interest are many.
It can be seen that legged locomotion is often the most ideal mode for mobility over
rough terrains. In fact only half of the earth’s landmass is accessible to wheeled and
tracked vehicles. The advantage of legged locomotion in this regard can be attributed
to isolated footholds which optimize support and traction.Yet another advantage is
that the payload (body) can move smoothly irrespective of the roughness in terrain as
legs decouple the path of the body from the path of the feet. A legged system can also
step over obstacles. Further, research in this area can helpus gain better understanding
of human and animal locomotion. Motivated by these reasons,a large amount of work
has gone into the study of legged robots. A detailed description of the initial research
and various milestones in this regard can be seen in [2].

Legged locomotion is studied under various modes such as walking, running, skip-
ping etc. In this work we focus on walking. It has been proved that bipeds are capable
of walking down slopes without any control inputs. This is called passive walking and
can be seen in [3], [4]. In [5], the author has shown the existence of a class of walk-
ing machines that settle into a steady gait quite comparableto human walking when
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started with shallow slope, without active control or energy input. In [6], the authors
extend the stability analysis of the simplest walker [7] to obtain improved and accu-
rate analysis of the simplest walker. Active walking with the help of controllers is of
more practical interest and a wide variety of control laws have been proposed for the
same. In [3], the authors argue that mimicking the passive gait via control will have
its advantages. A portion of control strategies proposed inliterature for biped locomo-
tion depend on trajectory tracking. This is done using continuous PID controller [8],
computed torque control [9] etc. Other control approaches which do not rely on trajec-
tory tracking include energy tracking control laws [10], control of angular momentum
[11] and intuitive control strategies [12]. Other works have attempted the use of foot
actuation via impulsive foot action [13].

In this work we aim at taking a simple biped model into a stablewalking limit
cycle. While most of the previous work on biped walking have assumed the biped to
be already in a favourable initial condition within the limit cycle, we attempt to initiate
the biped into walking from a resting initial position - a more realistic scenario. This
gait initiation and the succeeding walking cycle are achieved using a set of feedback
control laws.

2 Mathematical Model

The primary step in the study of legged robots is the selection of an appropriate math-
ematical model to represent the system. A large variety of models have been proposed
in literature with varying degrees-of-freedom and complexity. They differ in the pres-
ence of knees, torso, limbs and other features[1, 14]. For selecting an appropriate
model for study, a compromise has to be made between accuracyof the model and
its simplicity. The most simple model seen in literature representing a biped is the
compass gait model in [3]. The simple addition of a torso to this model resulted in a
challenging yet tractable model called the ‘knee-less biped with torso’.
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Figure 1: Knee-less biped with torso
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This biped model consists of two legs and a torso as shown in Fig. 1. The angleθ1
corresponds to the stance leg,θ2 the swing leg andθ3 the torso. The legs are taken to
be symmetric with lengthr. Massm of each leg is assumed to be lumped at a distance
of r/2. The hip is assumed to be a point massMH . The torso Center-of-Mass (COM)
with massMT is taken at a distancel from the hip. The hip contains two actuators,
one for each leg. It is to be noted that for the above model to beable to walk without
scratching the surface, a foldable or retractable tip is assumed as in [10]. Keeping the
mass of this tip negligible, this provision can be neglectedin the theoretical study of
the biped walking.

Walking consists of two alternating phases - the swing phaseand the impact phase.
Hence a hybrid model is used to describe the dynamics associated with it.

The dynamic model of the swing phase for the walker is obtained using Euler-
Lagrange equations given byd

dt
∂L

∂θ̇i
− ∂L

∂θi
= τi, i = 1, 2, 3 where the LagrangianL is

the difference between kinetic and potential energies of the system andτ is the vector
of external torques. Note thatτ3 = 0. For the walker in swing phase,qs = (θ1, θ2, θ3)
and the dynamics are

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = Bs(qs)u (1)

where,

Ms =





r2( 5
4
m+MH +MT ) − 1

2
mr2c12 MT rlc13

− 1

2
mr2c12

1

4
mr2 0

MT rlc13 0 MT l
2



 ;Bs =





−1 0
0 −1
1 1





Cs =





0 − 1

2
mr2θ̇2c12 MT rlθ̇3s13

1

2
mr2θ̇1s12 0 0

−MT rlθ̇1s13 0 0



 ;Gs =





d
1

2
gmr sin θ2

−gMT l sin θ3



 .

c12
△
= cos(θ1 − θ2), c13

△
= cos(θ1 − θ3), s12

△
= sin(θ1 − θ2), s13

△
= cos(θ1 −

θ3), d
△
= − 1

2
g(2MH + 3m + 2MT )r sin θ1. With x = (qs, q̇s), (1) can be written in

state-space form as

ẋ = fs(x) + gs(x)u. (2)

During the impact phase the swing leg comes in contact with the ground. The stance
leg is assumed to leave the ground simultaneously with this impact. Hence the impact
phase is instantaneous and can be modeled as a discrete map, in other words a mapping
from states ‘before’ impact to ‘states’ after impact. This impact model is derived using
the principle of conservation of angular momentum as explained below.

Unlike the swing phase where we only required three states (as stance leg tip
remains fixed over a step) the impact phase requires five states. Thus we augment
z1, z2 to qs to obtainqe = (θ1, θ2, θ3, z1, z2). The equations thus obtained are

Me(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Be(qe)u+ δFext. (3)
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The vectorδFext represent the external impulse forces acting on the body during con-
tact. Integrating (3) over the duration of impact we can obtain

Me(qe)(q̇
+
e − q̇−e ) = Fext. (4)

whereq̇+e is velocity after impact,̇q−e is velocity before impact andFext =
t+
∫

t−
δFext.

Heret− is the time just before impact andt+ just after. The co-ordinates of the end

of swing leg is given byγ(qe) =

[

z1 + r sin θ1 − r sin θ2
z2 + r cos θ1 − r cos θ2

]

. Further letFT , FN

be the forces (in the Cartesian space) applied at the tip due to impact and define
F = [FT FN ]

⊤. The transformation from Cartesian space to joint space givesF⊤γ̇ =
F⊤
extq̇e. But γ̇ = ∂γ

∂qe
q̇e = Eq̇e whereE = ∂γ

∂qe
. Substituting inγ̇ and rearrang-

ing F⊤E − F⊤
ext = 0 yieldsFext = E⊤ [FT FN ]

⊤. Assuming that the leg neither
rebounds nor slips on impact, leads to

d

dt
γ(qe) = (

∂γ

∂qe
)q̇+e = Eq̇+e = 0. (5)

Combining (4) and (5) we obtain
[

Me −E⊤

E 0

] [

q̇+e
F

]

=

[

Meq̇
−
e

0

]

. (6)

Also it can be seen that the legs swap their role on impact. Thus θ1 andθ2 are inter-
changed whereasθ3 remains same on impact. Henceθ+1 = θ−2 ; θ

+

2 = θ−1 ; θ
+

3 = θ−3
which along withq̇+e from (6) forms the discrete map representing the impact model
and is denoted by

x+ = △(x−). (7)

where△ returns the states after impact(x+) as a function of states before impact(x−).
The overall hybrid model of the biped walker is obtained by combining (2) and

(7). For this first we define the walking surfaceS asS = {(qs, q̇s) : θ1 + θ2 = 0}.
The overall hybrid model of the three-link walker can then bewritten as

ẋ = fs(x) + gs(x)u x−(t) /∈ S
x+ = △(x−), x−(t) ∈ S.

(8)

3 Proposed Control Law

The control objective is to initiate walking in the biped in avisually appealing gait,
and continue the walk until a stable limit cycle is reached. The verification of stability
of the limit cycle will is carried out using Poincaré maps, which is omitted for the sake
of brevity. The objective of walking from rest was achieved in two stages. The first
phase aimed at kick-starting the motion by moving the torso front and hence make
the biped fall forward. The next phase aimed at manoeuvring this falling biped into
a stable walking limit cycle behaviour. This phase is further divided into three sub-
phases depending on the angle of the stance leg. Specific objectives are assigned for
each sub-phase and state feedback control laws are used to achieve the same.
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3.1 Phase I - gait initiation

To initiate walking, the biped’s center-of-gravity have tobe shifted ahead. This is
achieved by rotating the torso forward using the stance-legactuator. The aim is only
to reach a required angular position, and not to stabilize around it. Therefore, a neg-
ative feedback control using the angular velocity of the torso would achieve the same
result, keeping the angular velocity within a specified limit. The control law used is
τ1 = kI,st(θ̇3 + 1.5) + 10e10θ3 . The first termkI,st(θ̇3 + 1.5) contains the main
feedback control, which brings the torso to a terminal angular velocity of1.5 rad/s in
the clockwise direction. The second term10e10θ3 only increases the rate at which the
system moves towards it’s feedback aim.

3.2 Phase II - stable walking

Phase II is a sequences of sub-phases which begins the momentthe swing leg detaches
from the surface, and ends when the step is made. Every step the biped makes is one
iteration of phase II. The second phase consists of three sub-phases: 1) From the start
of Phase II till the stance leg becomes vertical, and is aboutto fall forward, 2)from the
end of sub-phase I till the swing foot reaches a desired position above the surface, 3)
from the end of sub-phase II till the swing foot makes contactwith the surface.

3.2.1 Sub-phase I

The local objective of this sub-phase is to: a)Bring the swing leg forward towards the
stance leg, b) to reduce the difference between|θ1| and|θ2| , in order to make the gait
resemble that of a human, c) to reduce the torso angular velocity as much as possible.

The stance leg control lawτst,sub−phase I = k1,st

(

−m
(

θ̇1 + (π/2)
)2

+ θ̇3

)

is

aimed at taking the angular velocity of the stance leg to a required value, in ad-
dition to the feedback control on the angular position of thetorso. The first term

−k1,stm
(

θ̇1 + (π/2)
)2

is the negative feedback control which settles the angular ve-

locity of the stance leg to a value ofπ/2 rad/s. The second termk1,stθ̇3 attempts at
reducing the angular velocity of the torso. The swing leg control is aimed at reducing
the difference between the angular positions of the swing and stance legs. In addition
to moving the swing leg forward, this feedback control makesthe gait resemble the
human walking gait. The feedback controlτsw,sub−phase I = k1,sw (−θ1 − θ2) is a
state feedback controller, with an adjusted coefficient. The first sub-phase ends at the
moment the stance leg crosses the vertical.

3.2.2 Sub-phase II

This sub-phase is crucial in increasing the overall velocity of the biped, and in moni-
toring the step-length in the current and subsequent steps.The local objective of this
sub-phase is to: a) Continue the motion of the stance and swing legs, in their respec-
tive directions, b) increase the clearance gap between the swing foot and the ground,
in order to detect the position at which the step fall can be initiated (Phase III), c) bring
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the torso angle to a desirable value.
The stance leg control lawτst,sub−phase II = k2,st (θ3 + (π/6)) is aimed at bringing
the torso angle to a desirable value, which here isπ/6. The desirable value given in the
feedback control here isπ/6. Note that the torso might never reach the given desired
value, but the feedback control will achieve the target of stabilizing the value of the
torso angle to a certain small range.

The swing leg control law is aimed at the first and second objectives. The first
objective is met in a way similar to the swing leg control law of Phase I. The sec-
ond objective is dependent on the step length to be taken by the biped. A clear-
ance of5 cm is taken as the goal of the feedback control, and the resulting law is

τsw,sub−phase II = k2,sw

[

−θ1 − θ2 +
l
θ0

]

where,θ0 is the initial angular position of

the stance leg, just before the current step began. The presence ofθ0 ensures that the
step length taken in the current step is approximately equalto the previous step. This
prevents the step length from increasing drastically, which lowers the biped, in which
case the subsequent step might not be able to overcome the sudden loss in Potential
Energy. The second sub-phase ends when the stance leg reaches a certain given angle,
which is a simple function ofθ0. This is also to ensure that the step-length does not
change too much.

3.2.3 Sub-phase III

This is the sub-phase in which the impact occurs. The local objective of this sub-
phase is to: a) Manoeuvre the swing leg so that the foot attains a near vertical angle of
approach just before impact, b) bring the torso angle to the desirable value, i.e.π/6.
The stance leg control lawτst,sub−phase III = k3,st [θ3 + (π/6)] is again aimed at the
torso angle.

The swing leg control law is aimed at the first objective. The expression in the
feedback control
τsw,sub−phase III = k3,sw

[

cos (θ1) θ̇1 − cos (θ2) θ̇2 − p (θ2 − (π/15))
]

is the deriva-

tive of the horizontal velocity of the swing foot.

3.3 Mathematical accruement

The requirement is to integrate the three control laws into asingle continuous function.
With the help of ‘switching’ functions, the overall controllaw can be written asτi =
f1C1 + f2C2 + f3C3 whereC1, C2, C3 correspond to the control laws of the first,
second and third sub-phases respectively andf1, f2, f3 are the switching functions
selected such that they have a constant value (preferably 1)during the corresponding
sub-phase and is zero elsewhere. Hence during sub-phase 1,τi = 1 ∗ C1 + 0 ∗ C2 +
0 ∗ C3 = C1 and so on. The natural choice for such a switching function would
be rectangular pulses. But this renders the system discontinuous, hence continuous
functions which approximate the rectangular pulse were sought. The tan hyperbolic
function has a behaviour which can be manipulated to obtain this approximation. Two
appropriately constructedtanh( · ) functions can be added to obtain a function which
is very close to a rectangular pulse. The sub-phases of the biped were defined based
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on the value of the stance angle,θ1. Hence tan hyperbolic functions ofθ1 were used
to obtain the switching functions for the biped.

4 Simulation Results

The equations (8) were solved to obtain the continuous evolution of the states. The in-
tegration was stopped on detecting an ‘impact’ of the swing leg with ground, denoting
the end of the current step.‘Impact’ was detected by the ODE solver using its built-in
‘events’ function which kept checking forθ1 = θ2 with every integration step. On
detecting an impact the integration was terminated and the final states were passed on
to a discrete mapping function which represents the change in states due to impact.
The equations obtained for the impact phase were used for calculating the new states
after impact. These new states were then passed back to the ODE solver, which ac-
cepts them as the new initial conditions and restarts integration as before. This whole
cycle is repeated until a ‘fall’ is detected or the biped walks a prescribed number of
steps or if a specified time limit is reached. From the initialrest condition, Phase I of
the control law was successful in pushing the torso forward.The leg angles (θ1 and
θ2) remain constant at the initial values throughout the phasewhereasθ3 decreases (as
clockwise is considered negative). The plot of angles during gait initiation are shown in
Fig. 2(a). After successful gait initiation, the phase II ofthe controller becomes active
and tries to initiate the biped towards a walking behaviour.The biped converging to
a limit cycle walking was successfully simulated. The limitcycle was obtained when
the biped reached the statex = (−.1157, .1157,−.4565,−1.3261,−0.3949, 2.1681).
This convergence can be seen from the plot ofθ1 vsθ2 as shown in Fig. 2(b). The stick
animation of the biped converging to the limit cycle and thenwalking without fail for
any prescribed number of steps is shown in Fig. 2(c).

5 Conclusion

The knee-less biped model was successfully taken into a stable limit cycle correspond-
ing to a walking gait using simple control laws. The problem was simplified by divid-
ing the walking cycle into two main stages - gait initiation and stable walking. Stable
walking was further tackled in three sub-phases. Individual objectives were identified
for each sub-phase and feedback control used to achieve them. The walking so ob-
tained was further analyzed for stability using Poincaré Return maps and found to be
stable. The robot was also found to be stable against slipping.
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