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Abstract 

 
This paper describes the formulation of equations of motion of a spatial 

pendulum using Euler-Lagrange formulation. Note that the pendulum has one 
spherical joint with three rotational degrees of freedom. Out of 12 possible Euler-
Angles combinations available to represent the spherical joint, the ZYZ Euler angles 
were used to describe the rotations of the link. The equations of motions involving 
partial differentiations, etc. were obtained using symbolic computations. Such 
symbolic expressions help in interpreting the effect of parameters on the overall 
dynamic behavior of the system at hand. For the spatial pendulum, simulations were 
performed by varying the different rotational angles. The Coriolis and centrifugal 
forces were evaluated symbolically. After four-stage simplifications about 1000 
terms could be brought down to less than 100 terms using the “simplify” command 
of MATLAB in a systematic way which will be shown in the paper. 

  
 Keywords: Spatial pendulum, symbolic computations, forward dynamics 

1 Introduction 
In computer-aided control system design, both symbolic and numeric manipulation 
tools for equations play important roles. The modelling and simulation of mechanical 
systems are typical examples where such mixed manipulation is effective [1]. The 
demonstration of the various applications of symbolic computation in robot 
manipulator design and analysis is presented by [2]. The general purpose computer 
algebra tools packages such as Mathematica, REDUCE and MAPLE for the 
manipulation of mechanical system dynamics equations are used extensively. Some 
work based on this packages, has reported- for example Mathematica [1], REDUCE 
[3], SYMRO+ [4], MAPLE [5, 6]. This paper deals with the dynamic modelling and 
simulation of a spatial pendulum using symbolic and numeric computations. The 
spatial pendulum consists of a rigid body, supported at a fixed pivot, with three 
rotational degrees of freedom. The mathematical model of the system is 
systematically given through the Euler-Lagrange formulation with some symbolic 
operations. The simulation is treated as initial value problem to the equations of 
motion using the Runge-kutta algorithm of MATLAB [7]. Pendulum models are 
useful for both pedagogical and research reasons. A Pendulum represents a physical 
system that can be viewed as one type of mechanical system that arise in, for 
example, robotics and spacecraft applications [8]. The spherical joint can also be 
represented as a set of three intersecting revolute joints meeting at a joint called 
Euler-angle-joints [9]. In this paper, the equations of motion of the pendulum are 
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derived in symbolic form using the symbolic computation functions of MATLAB. 
The expressions were used to perform the simulation of pendulum when it was 
allowed to fall freely under gravity. 

2 Euler-Lagrange Formulation 
The dynamic model of a mechanical system can be derived by using the concept of 
generalized coordinates and a scalar function called Lagrangian. The Lagrangian is 
defined as the difference between the kinetic and potential energy of the mechanical 
system under study [10]. i.e. 
 

L=T-U                                                    (1) 
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          Figure 1: Spatial pendulum                    Figure 2: ZYZ Euler angles 
  
where L denotes the Lagrangian,  and T and U are respectively the total kinetic and 
potential energy of the system at hand. The kinetic energy depends on both 
configuration, i.e., the position and orientation, and velocity of the system, whereas 
the potential energy depends only on the configuration of the links. The Euler-
Lagrange equations of motion are then given by 
 

     for 1,......,i
i i

d L L
i n

dt q q


  
   

  
 

 
(2) 

                                           
where n is the number of independent generalized coordinates used to define 

system’s configuration, and 's and iq '
i s  are the generalized coordinates and 

generalized forces. For the spatial pendulum at hand shown in Fig. (1), the degree of 
freedom (DOF) is three. Hence, n=3. As shown in [10], Eqs. (1) and (2) can be 
obtained as 
 

+ + =Iθ h γ τ  (3) 

                                                                                                           
where I is n x n generalized inertia matrix (GIM) and the n-dimensional vectors 

are defined below: ,  and h γ τ






 1,.....,
T

nh hh : the n-dimensional vector of centrifugal and Coriolis accelerations; 

1,......,
T

n  γ : the n-dimensional vector of gravitational accelerations; 

1,......,
T

n  τ :the n-dimensional vector of generalized forces. 
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2.1 Kinematics of spatial pendulum 
The Spatial pendulum of Fig. (1) has a rigid body supported by a fixed frictionless 
pivot. The supporting pivot allows three degrees of rotational freedom. Out of the 
two frames shown in Fig. (1) the fixed frame is located at the origin of the pendulum 
and the moving frame is attached to the end of the  body. The inertial parameters, 
i.e., the mass, the inertia tensor and the position of the center of gravity of the 
pendulum were provided with respect to the inertial frames. Note that the Euler angle 
rotations (ZYZ) were used to represent DOF of the system and all the vectors 
expressed in the body fixed-frame were transformed to the fixed-frame using the 
ZYZ rotational angles. The Euler angles constitute a minimal representation for the 
orientation of a rigid body which is essentially composed of three elementary 
rotations with respect to the axes of the current frames. The three rotation angles are 
denoted here as ,   and    , as shown in Fig. (2). 

2.2 Dynamics of spatial pendulum 
The motion of the pendulum was described by ZYZ Euler angle rotations. The 
associated rotation matrix denoting the orientation of rigid body with respect to the 
fixed-frame is given by [10]. 
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(4) 

                                            
where ‘C’ and ‘S’ stand for Cosine and Sine functions, respectively. The associated 
angular velocity of the pendulum is denoted byω , which is expressed as 
 

ω Lθ  (5) 
 

where  T  θ the angles ,  and    are shown in Fig. (2) and L is the 3x3 

transformation matrix represented as [10] 
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(6) 

2.3 Generalized Inertia matrix (GIM) 
The generalized inertia matrix (GIM) of the spatial pendulum shown in Fig. (1) can 
be derived from its kinetic energy expression as 
 

1 1

2 2
T T cT m c c ω I ω   

 
(7) 

 
where c represents the 3-dimensional vector of linear velocity of the mass center, C 
in Fig. (1), of the pendulum, is the 3-dimensional vector of angular velocity, and 


ω
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cI

ω

is the 3x3 inertia tensor about the C. Using the 3-dimensional vector  as after 
Eq. (5), as the vector of independent generalized coordinates and the expression of 

in Eq.(5), one can write 

θ

  

 c Lθ c  (8) 
 

In Eq. (7), the 3x3 cross-product tensor [5] with respect to vector c is a function 
of ,  and L is given by Eq. (6). Substituting Eq. (8) in Eq. (7), the kinetic energy of 
the pendulum is given by 
 

1

2
TT  θ Iθ   

 
(9) 

 
Where I is the 3x3 GIM of the pendulum at hand. 
 
If the vector c denoting the mass center position can be represented as 

2 ,
2

a
c i

s 

where  is the unit vector along the axis X2i 2, Fig. (1) then the expression 

of the GIM is obtained a
 

2 2

3 3 2 24 4
T T T T

x
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  I L L L i i L L cI L  
 

(10) 

 
The elements of GIM were then computed using the symbolic computation functions 
of MATLAB [7] by inputting the following values: 
Mass of the pendulum (rigid body) =m; Length=a;  2 1 0 0i ; Diameter=d and 
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Note that  2 2
 and [ ]ci I 2 Iare the vector represented in the body- 

fixed frame 2 shown in Fig. (1). Defining all the variables in MATLAB as “syms,” 
i.e., “symbolic” the elements of the GIM were evaluated, as shown in Fig. (3).The 
few elements resolve after symbolic operation were shown in Appendix A.2.   

2
and tensor ci

2.4 Centrifugal and Coriolis accelerations 
The components of the 3-dimensional vector h in Eq. (3) representing centrifugal 
and Coriolis acceleration of the spatial pendulum at hand are evaluated as [10] 
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3 3
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(11) 

 where,  or  j k  in the above equations corresponds to three DOF’s of the 

pendulum or the 3 rotations, namely ,  and .   Since the expressions of h-vector 

include  partial differentiation of the inertia matrix elements which is not easy to 
compute by hand before any numerical simulation, they were computed symbolically 
by using the symbolic operations of MATLAB[7]. For the symbolic computation, 
instead of defining the parameters numerically they were represented as symbolic 
using the command ‘syms.’ Further, the elements of vector h computed symbolically 
were lengthy containing more than 1000 terms. Hence the four-stage simplification 
was carried out using the command ‘simplify.’ That way, the number of terms in the 
element of vector h were reduced under hundred. Terms before and after 
simplification were given in Appendix A.1. The expressions generated by the 
symbolic operations were then exported to the numerical computation environment. 
The Fig. (3) shows the systematic use of symbolic computation of vector h and 
sequence of simplifications. 
 

 

% To calculate h vector 
syms th1 th2 th3 th1d th2d th3d m a d 
Qz=[cos(th1)  -sin(th1)  0 
    sin(th1)  cos(th1)   0 
    0           0        1]; 
 Qy= [cos(th2)    0   sin(th2) 
     0           1    0 
     -sin(th2)   0    cos(th2)]; 
 Qzz= [cos(th3)     -sin(th3)       0 
      sin(th3)      cos(th3)       0 
      0                0           1]; 
%Q=rotation matrix 
Q = Qz*Qy*Qzz; 
Q1=simplify(Q); 
Icff=Q1*Ic*transpose (Q1); 
Icff1=simplify(Icff); 
L=[0   -sin(th1)   sin(th2)*cos(th1)  
   0   cos(th1)    sin(th2)*sin(th1) 
   1      0          cos(th2)          ]; 
% I=(GIM)  
I=(0.25*m*a*a*transpose(L)*L)-(0.25*m*a*a*transpose(L)*[1;0;0]*[0 0 
1]*L)+(transpose(L)*Icff1*L); 

Figure 3: Symbolic computation of vector h in (MATLAB) 

I1=simplify(I); 
h1=(diff(I1(1,1),th1)-.5*diff(I1(1,1),th1))*th1d*th1d+..... 

Stage 1 simplification 

Stage 2 simplification 

Stage 3 simplification

h2=(diff(I1(2,1),th1)-.5*diff(I1(1,1),th2))*th1d*th1d+..... 
h3=(diff(I1(3,1),th1)-.5*diff(I1(1,1),th3))*th1d*th1d+..... 
h11=simplify(h1); 
h22=simplify(h2); 
h33=simplify(h3); 

Stage 4 simplification
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2.5 Gravitational accelerations 
The terms for the gravitational accelerations can be obtained from [5] as 

3

1

jT
i j

ij

m



 


c

g  , for i 1, 2,3  
 
(12) 

Which for the spatial pendulum leads to 

1 2 30;  ;  
2 2

mag mag
C C S S           

 
(13) 
 

3 Simulation 
Simulation was performed using the equations of motion derived in section 2 to 
predict the behavior of the spatial pendulum. The following numerical values were 
used for the numerical simulation. 
Length, a=1m; mass, m= 2.5 kg; Diameter, d=.02; Acceleration due to gravity, 

=9.8m/s2; Initial values, ; ;
2 4

       0 ; Input torques,  of Eq. (3)=0. No 

input torques were considered, as the interest was to simulate the free-fall behavior 
of the system. Fig. 4 (a) shows the behavior of the spatial pendulum. Note that the 
behavior of Fig. (4) corresponds to the behavior of a planar pendulum where a rigid-
body is attached to the fixed frictionless pivot using a revolute joint, as the initial 
condition were chosen that way. In order to visualize a spatial behavior, the initial 

conditions were changed to ; ;
2 4 4

    
       for which the results are 

shown in Fig. (5). Results of Fig. (5), clearly demonstrates the motion in 3-
dimensional space. The results of Figs. (4) and (5) were validated with the algorithm 
developed by [9] using a full numerical computer algorithm compared to symbolic-
cum-numeric algorithm proposed here. Fig 5(a) shows the displacement in all three 
directions, showing the spatial motion of the pendulum. Fig. 4(b), and Fig 5(b), 
shows joint rates for respective Euler angle rotation. For 0  (the second Euler 
angle rotation) the system shows singular behavior. 

 

(a) Joint angles               (b) Joint rates 

Figure 4: Simulation for ; ;
2 4

       0  Euler angle rotations 
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(a) Joint angles               (b) Joint rates 

Figure 5: Simulation for ; ;
2 4 4

        


Euler angle rotation 

4 Conclusions 
A systematic development of the dynamic equations of motion of a spatial pendulum 
has been presented in this paper using Euler-Lagrange formulation. The symbolic 
operations using MATLAB’s ‘syms’ and ‘simplify’ commands were performed to 
compute GIM, centrifugal and Coriolis acceleration terms. Simulations were 
performed using the above computations. Even though the symbolic-cum-numerical 
algorithm proposed for a pendulum was used for a simple simulation. The concept 
can be used for stability study of the same pendulum or can be used for more 
complex mechanical system with spatial motions. 
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Appendix 

A.1 Term of vector h 

h1 terms before simplification: Are more then 1000 

h1 terms after four stage simplification:      

1/10000*m*(1250*th1d*th2d*d^2*cos(th2)*cos(th3)^2*sin(th2)+6666*th1d*th2d*cos(th2)*a^2*cos(th3)
^2*sin(th2)+1250*th1d*th3d*d^2*cos(th3)*sin(th3)-1250*th1d*th3d*d^2*cos(th2)^2*cos(th3)*sin(th3)-
6666*th1d*th3d*cos(th3)*a^2*sin(th3)+6666*th1d*th3d*cos(th2)^2*a^2*cos(th3)*sin(th3)+1250*a^2*c
os(th1)*th1d*th2d+625*cos(th2)*cos(th3)*sin(th3)*th2d^2*d^2-
3333*cos(th2)*cos(th3)*sin(th3)*th2d^2*a^2+1250*th3d*th2d*sin(th2)*cos(th3)^2*d^2+9166*sin(th2)*t
h3d*th2d*a^2-
6666*th3d*th2d*sin(th2)*cos(th3)^2*a^2+1250*th3d*th2d*a^2*cos(th1)*cos(th2)+1250*a^2*sin(th1)*si
n(th2)*th1d*th3d+1250*a^2*sin(th1)*sin(th2)*cos(th2)*th3d^2). 

A.2 Element of GIM 

i33 element of 3x3 GIM before simplification: 

1/4*m*a^2*cos(th1)^2*sin(th2)^2+1/4*m*a^2*sin(th1)^2*sin(th2)^2+1/4*m*a^2*cos(th2)^21/4*m*a^2*
cos(th1)*sin(th2)*cos(th2)+(cos(th1)*sin(th2)*(1/8*(cos(th1)*cos(th2)*cos(th3)-sin(th1)*sin(th3))^2 
*m*d^2+(-cos(th1)*cos(th2)*sin(th3)-sin(th1)*cos(th3))^2*(1/16*m*d^2+3333/10000*m*a^2) 
+cos(th1)^2*sin(th2)^2*(1/16*m*d^2+3333/10000*m*a^2))+sin(th1)*sin(th2)*(1/8*(cos(th1)*cos(th2)*c
os(th3)-sin(th1)*sin(th3))*m*d^2*(sin(th1)*cos(th2)*cos(th3)+cos(th1)*sin(th3))+(-cos(th1)*cos(th2) 
*sin(th3)-sin(th1)*cos(th3))*(1/16*m*d^2+3333/10000*m*a^2)*(-sin(th1)*cos(th2)*sin(th3) 
+cos(th1)*cos(th3))+cos(th1)*sin(th2)^2*(1/16*m*d^2+3333/10000*m*a^2)*sin(th1))+cos(th2)*(-
1/8*(cos(th1)*cos(th2)*cos(th3)-sin(th1)*sin(th3))*m*d^2*sin(th2)*cos(th3)+(-cos(th1)*cos(th2) 
*sin(th3)-sin(th1)*cos(th3))*(1/16*m*d^2+3333/10000*m*a^2)*sin(th2)*sin(th3)+cos(th1)*sin(th2) 
*(1/16*m*d^2+3333/10000*m*a^2)*cos(th2)))*cos(th1)*sin(th2)+(cos(th1)*sin(th2)*(1/8*(cos(th1)*cos(
th2)*cos(th3)sin(th1)*sin(th3))*m*d^2*(sin(th1)*cos(th2)*cos(th3)+cos(th1)*sin(th3))+(cos(th1)*cos(th2
)*sin(th3)sin(th1)*cos(th3))*(1/16*m*d^2+3333/10000*m*a^2)*(sin(th1)*cos(th2)*sin(th3)+cos(th1)*co
s(th3))+cos(th1)*sin(th2)^2*(1/16*m*d^2+3333/10000*m*a^2)*sin(th1))+sin(th1)*sin(th2)*(1/8*(sin(th
1)*cos(th2)*cos(th3)+cos(th1)*sin(th3))^2*m*d^2+(sin(th1)*cos(th2)*sin(th3)+cos(th1)*cos(th3))^2*(1/
16*m*d^2+3333/10000*m*a^2)+sin(th1)^2*sin(th2)^2*(1/16*m*d^2+3333/10000*m*a^2))+cos(th2)*(1
/8*(sin(th1)*cos(th2)*cos(th3)+cos(th1)*sin(th3))*m*d^2*sin(th2)*cos(th3)+(sin(th1)*cos(th2)*sin(th3)+
cos(th1)*cos(th3))*(1/16*m*d^2+3333/10000*m*a^2)*sin(th2)*sin(th3)+sin(th1)*sin(th2)*(1/16*m*d^2
+3333/10000*m*a^2)*cos(th2)))*sin(th1)*sin(th2)+(cos(th1)*sin(th2)*(-
1/8*(cos(th1)*cos(th2)*cos(th3)-sin(th1)*sin(th3))*m*d^2*sin(th2)*cos(th3)+(-
cos(th1)*cos(th2)*sin(th3)sin(th1)*cos(th3))*(1/16*m*d^2+3333/10000*m*a^2)*sin(th2)*sin(th3)+cos(t
h1)*sin(th2)*(1/16*m*d^2+3333/10000*m*a^2)*cos(th2))+sin(th1)*sin(th2)*(1/8*(sin(th1)*cos(th2)*cos
(th3)+cos(th1)*sin(th3))*m*d^2*sin(th2)*cos(th3)+(sin(th1)*cos(th2)*sin(th3)+cos(th1)*cos(th3))*(1/16
*m*d^2+3333/10000*m*a^2)*sin(th2)*sin(th3)+sin(th1)*sin(th2)*(1/16*m*d^2+3333/10000*m*a^2)*c
os(th2))+cos(th2)*(1/8*sin(th2)^2*cos(th3)^2*m*d^2+sin(th2)^2*sin(th3)^2*(1/16*m*d^2+3333/10000*
m*a^2)+cos(th2)^2*(1/16*m*d^2+3333/10000*m*a^2)))*cos(th2)] 
 

i33 element of 3x3 GIM after simplification:  

-1/10000*m*(2500*a^2*cos(th1)*sin(th2)*cos(th2)-5833*a^2-625*d^2)]. 
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